
7.5  Homogeneous linear system with constant coefficients 
 

Model Problem： 

dx
x Ax

dt
   

where A  is a real constant n n  matrix and x  is a vector. 

 

Q： How to solve x Ax  in general？ 

 

Motivation： 

For 1n  , the system reduces to a single first order equation 

x ax .  And the solution can be easily written as atx ce . 
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Note that 0x   is a solution. 

．If 0a  , then atx ce , ∴ all other solutions 0   

as t  .   In this case, we say that 0x   is an  

asymptotically stable  equilibrium solution. 

．If 0a  , then all other solutions depart from 0x    

as t  increases.    In this case, 0x   is unstable. 

 

Q： How to solve x Ax  for 1n  ？ 

We begin with a simple example. 
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ex： Find the general solution of the system 
2 0

0 3
x x

 
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sol： Let 1

2

x
x

x

 
  
 

, then 1 1

2 2

2 0
=

0 3

x x

x x

    
    

    

1 1

2 2

=  2

= -3

x x

x x
  

     It's a decoupled system of equations, so we can solve these two equations separately. 

     ∴ 2
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     ∴ (1) (t)x  & (2) (t)x  form a fundamental set of solutions, and the general solution  

is given by (1) (2)

1 2(t) (t) (t)x c x c x   
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Phase Plane 

 
• When n = 2, then the system reduces to 

 

 

• This case can be visualized in the x1x2-plane, which is 

called the phase plane.   

• In the phase plane, a direction field can be obtained by 

evaluating Ax at many points and plotting the resulting 

vectors, which will be tangent to solution vectors.  

• A plot that shows representative solution trajectories is 

called a phase portrait.   

• Examples of phase planes, directions fields, and phase 

portraits will be given later in this section.   
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For the general system, we guess the solution is of  

the form rtx e , where   and r  are yet to be  

determined. 

If rtx e  is a vector solution to x x  , then  

we have rt rtr e e   r    . 

∴ r  is an eigenvalue of   and   is the  

associated eigenvector. 

( rI) 0     ∴ det( rI) 0  . 
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So what's the moral of the story？ 

If we can find the eigenvalues, then we can write down  

the solutions！ 

We begin with case of 2 2  coefficient matrices, the  

general n n  system will to discussed later on. 

 

case 1： Distinct eigenvalues 

case 2： Repeated eigenvalues 

case 3： Complex eigenvalues 

p6 



case 1： Distinct eigenvalues 

 

Ex： Find the solution of the following system 
1 1

4 1
x x

 
  
 

 

sol： as we discussed before, we try to find the eigenvalues. 

     2
1 1

(1 ) 4 0
4 1







   


   1 2     

     ∴ 1 3or   , to find the solution. 

We need to find the eigenvectors. 
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∴ We have found two solutions  
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By Theorem 7.4.2, we know that any solution of x Ax   

can be written as 
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∴ (1)x  and (2)x  from a fundamental set of solutions. 
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The case 2n   is special, if we let  
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     There are two ways to visualize the solutions  

     1： To visualize solutions in 
1 2x x - plane,  

this is so called the phase plane 

     2： To visualize solutions as functions of t . 

     If we want to visualize the behavior of solutions  

in 
1 2x x - plane, 

     3

1 1 2

t tx c e c e      3

2 1 22 2t tx c e c e 
. 
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∴ 3

1 2 1 2(2 )( 2 )x x x x     constant c  

     We draw the curves of 
1x ,

2x  according to different values of c . 

     When 0c  , we have two straight lines  

1 22 0x x  , 
1 22 0x x    

3

1 2 1 2(2 )( 2 )x x x x c     

     
1 1 2x x x   

     
2 1 24x x x   

How to get a relation between 
1x  and 

2x ？ 

     3

1 2 12 4 tx x c e 
, 1 2 22 4 tx x c e     
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To determine how 
1x ,

2x  behave as t  increases, 

     we look at the solution formula 

     3

1 1 2

t tx c e c e  , 3

2 1 22 2t tx c e c e   

     ． For the points on 
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        then 
1 2( , ) 0x x   as t  . 

     ． For the points on 
1 22 0x x   ,  
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        then 
1 2( , )x x   as t  . 

     Then we can draw the phase space diagram. 



 

     1 1 2

2 1 24

x x x

x x x

 


           

 

In each point. (
1x ,

2x ). in the phase space,  

we associate it with a unit tangent vector 

in the direction of 
1 2 1 2( ,4 )x x x x  . 

(1,1) (2,5)  

(1,0) (1,4)  

 

Remark：  

   To draw the phase space diagram, we need to solve the 

   problem first.   Without solving the problem we can also  

   draw a rough picture by using the concept of direction field. 
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d𝑥2
d𝑥1

=
4𝑥1 + 𝑥2
𝑥1 + 𝑥2

 

The direction field describes the rough behavior of solutions. 



Example 2: Direction Field   (1 of 9) 
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• Consider the homogeneous equation x' = Ax below. 

 

 

• A direction field for this system is given below. 

• Substituting x = ert in for x, and rewriting system as  

 (A-rI) = 0, we obtain 
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Example 2:  

Time Plots for General Solution   (9 of 9) 

• The general solution is x = c1x
(1) + c2x

(2):    

 

 

• As an alternative to phase plane plots, we can graph x1 or x2 

as a function of t.   A few plots of x1 are given below. 

• Note that when c1 = 0, x1(t) = c2e
-t  0 as t  .  

    Otherwise, x1(t) = c1e
3t + c2e

-t grows unbounded as t  .  

• Graphs of x2 are similarly obtained. 
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Example 3:  Direction Field   (1 of 9) 

 
• Consider the homogeneous equation x' = Ax below. 

 

 

 

• A direction field for this system is given below. 

• Substituting x = ert in for x, and rewriting system as  

 (A-rI) = 0, we obtain 
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Example 3: Eigenvalues (2 of 9) 

 
• Our solution has the form x = ert, where r and  are found 

by solving  

 

 

• Recalling that this is an eigenvalue problem, we determine r 

by solving det(A-rI) = 0:   

 

 

 

• Thus r1 = -1 and r2 = -4.    
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Example 3: First Eigenvector (3 of 9) 

 
• Eigenvector for r1 = -1:  Solve 

 

 
 

 by row reducing the augmented matrix: 

 

P8-3 

  








































































0

0

12

22

0

0

122

213

2

1

2

1








0ξIA r






































 







































2

1
choose

2/2

000

02/21

012

02/21

012

022

)1(

2

2)1(
ξξ







Example 3: Second Eigenvector (4 of 9) 

 
• Eigenvector for r2 = -4:  Solve 

 

 
 

 by row reducing the augmented matrix: 
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Example 3: General Solution (5 of 9) 

 
• The corresponding solutions x = ert of x' = Ax are 

 

 

• The Wronskian of these two solutions is 

 

 

• Thus x(1) and x(2) are fundamental solutions, and the 

general solution of x' = Ax is 
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Example 3: Phase Plane for x(1)   (6 of 9) 

 
• To visualize solution, consider first x = c1x

(1):  

 

 

• Now  

 

 

• Thus x(1) lies along the straight line x2 = 2½  x1, which is the 

line through origin in direction of first eigenvector (1)  

• If solution is trajectory of particle, with position given by 

(x1, x2), then it is in Q1 when c1 > 0, and in Q3 when c1 < 0.   

• In either case, particle moves towards origin as t increases.   
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Example 3: Phase Plane for x(2)   (7 of 9) 

 

• Next, consider x = c2x
(2):  

 

 

• Then x(2) lies along the straight line x2 = -2½  x1, which is the 

line through origin in direction of 2nd eigenvector (2)  

• If solution is trajectory of particle, with position given by  

 (x1, x2), then it is in Q4 when c2 > 0, and in Q2 when c2 < 0. 

• In either case, particle moves towards origin as t increases.   
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Example 3:  

Phase Plane for General Solution   (8 of 9) 

• The general solution is x = c1x
(1) + c2x

(2):    

 

 

• As t  , c1x
(1) is dominant and c2x

(2) becomes negligible. 

Thus, for c1  0, all solutions asymptotically approach 

origin along the line x2 = 2½  x1 as t  . 

• Similarly, all solutions are unbounded as t  - .  

• The origin is a node, and is  

asymptotically stable.   
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Example 3:  

Time Plots for General Solution   (9 of 9) 

• The general solution is x = c1x
(1) + c2x

(2):    

 

 

• As an alternative to phase plane plots, we can graph x1 or 

x2 as a function of t.   A few plots of x1 are given below.   

• Graphs of x2 are similarly obtained. 
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2 x 2 Case:   

Real Eigenvalues, Saddle Points and Nodes 

• The previous two examples demonstrate the two main cases 

for a 2 x 2 real system with real and different eigenvalues: 

– Both eigenvalues have opposite signs, in which case origin is a 

saddle point and is unstable. 

– Both eigenvalues have the same sign, in which case origin is a node, 

and is asymptotically stable if the eigenvalues are negative and 

unstable if the eigenvalues are positive. 
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We conclude this section with the general system  

x x     ： n n  matrix 

So far we are still in the case of n  distinct and real eigenvalues. 

 

So to find the solutions, we proceed as before： 

1) Find the eigenvalues 
1, , nr r  by solving the algebraic equation  

det( ) 0r   . 

2) Find the eigenvectors (1) ( ), , n   associated with 1 2, , , nr r r . 

  Note that (1) ( ), , n   are linearly independent.  

  ∴ The corresponding solutions of the system are  
1(1) (1) ( ) ( )(t) , , (t) nr tr t n nx e x e   .  
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0  (∵ independent) 
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1

(1) ( )

1 1

(1) ( )
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n
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n
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n n

e e

W x x

e e

 

 

   
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1

(1) ( )

1 1

( )

(1) ( )

n

n

r r t

n

n n

e

 

 

 


 

To show that (1) ( )(t), , (t)nx x  for a fundamental set  

of solutions, we compute their Wronskian： 
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3) Now we can form the general solution of the system  

1(1) ( )

1
nr tr t n

nx c e c e    . 

 

Remark：  

If   is real and symmetric, then all eigenvalues are real.   

Even if some of the eigenvalues are repeated, there is still  

a full set of n  eigenvectors (1) ( ), , n  . 

So the solution formula is still valid. 
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Ex： Find the general solution of 

0 1 1

1 0 1

1 1 0

x x

 
 

  
 
 

 

sol： 

     
3 3

3 2

2

1 1

det( ) det 1 1 0

1 1

1 1 3 2

( 3 2) ( 1)( 2)

( 1)( 1)( 2) ( 1) ( 2)



 



     

    

    

 
 

     
  

          

        

        

 

     ∴ 1, 1, 2     

Ex： Find the general solution of 

0 1 1

1 0 1

1 1 0

x x

 
 

  
 
 

 

sol： 

     
3 3

3 2

2

1 1

det( ) det 1 1 0

1 1

1 1 3 2

( 3 2) ( 1)( 2)

( 1)( 1)( 2) ( 1) ( 2)



 



     

    

    

 
 

     
  

          

        

        

 

     ∴ 1, 1, 2     
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     To find (1) , we solve 

(1)

1

(1)

2

(1)

3

1 1 1

1 1 1 0

1 1 1







  
  

  
     

   

∴ (1) (1) (1)

1 2 3 0      

     ∴ We can choose (1)

1

0

1



 
 

  
  

 and (2)

0

1

1



 
 

  
  

 

     For 2  , we have 

(3)

1

(3)

2

(3)

3

2 1 1

1 2 1 0

1 1 2







  
  

   
     

   

∴ (3) (3) (3)

1 2 32 0     
  

(3)

1

1

1



 
 

   
 
 

 



∴ The general solution can be written as  

        2

1 2 3

1 0 1

( ) 0 1 1

1 1 1

t t tx t c e c e c e 

     
     

       
           
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∴ The general solution can be written as  

        2

1 2 3

1 0 1

( ) 0 1 1

1 1 1

t t tx t c e c e c e 

     
     

       
           

 


