7.5 Homogeneous linear system with constant coefficients

Model Problem

dx A
Tt

where A 15 areal constant NxN matrix and X 1S a vector.
Q: Howtosolve X=AX in general 7

Motivation -
For n=1, the system reduces to a single first order equation

Xx=ax. And the solution can be easily written as X = ce® .



Note that x=0 1s a solution.

If a<0,then Xx=ce*, .. all other solutions — 0
as t—>oo, Inthiscase, we say that X=0 1san

asymptotically stable equilibrium solution.

[f a>0, then all other solutions depart from x=0

as 1 increases. In this case, X =0 1is unstable.

Q: Howtosolve X=Ax for n>19

We begin with a simple example.



-3

' 2 0 (= 2
sol -+ Let X=[Xl),then (lez( )(Xl) = X1 &
X, X, ) (0 =3){X X, = -3X,

[t's a decoupled system of equations, S0 we can solve these two equations separately.

2t 2t
LX=CeY, X,=ceY = X= Cle_st =, ° +C, (_)3t
C,€ 0 e

e 0
O e—3t

2 0
ex - Find the general solution of the system X = [0 jx .

—e 20

g% 0
. Let x(l)(t):(o], X(Z)(t)z(estj = WY ,x¥)=

LoxP) & xP(t) form a fundamental set of solutions, and the general solution

is given by X(t) =, x® () +¢,x? (1)
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Phase Plane

When n = 2, then the system reduces to
3"*1’ =y Xy T X,
Xy = Ay Xy +ayX,

This case can be visualized in the x,X,-plane, which is
called the phase plane.

In the phase plane, a direction field can be obtained by
evaluating Ax at many points and plotting the resulting
vectors, which will be tangent to solution vectors.

A plot that shows representative solution trajectories Is
called a phase portrait.

Examples of phase planes, directions fields, and phase
portraits will be given later in this section.



For the general system, we guess the solution 1s of
the form X=~&e", where & and r are yet to be
determined.
If x=~&e" isa vector solution to X = AX, then
we have rée" =Aéfe" = Aé=ré.

“ r 1saneigenvalue of A and & isthe

assoclated eirgenvector.
= (A-rhé=0 .. det(A-rl)=0.



So what's the moral of the story ?

[f we can find the eigenvalues, then we can write down
the solutions !

We begin with case of 2x2 coefficient matrices, the
general nxn system will to discussed later on.

case 1 + Distinct eigenvalues
case 2 -+ Repeated eigenvalues
case 3 -+ Complex eigenvalues



case 1 : Distinct eigenvalues

1 1
Ex ¢ Find the solution of the following system X = (4 J X

sol * as we discussed before, we try to find the eigenvalues.

1-4 1
4 1-1

|:(1—/1)2—4:O = 1-A=12

. A=-1 or 3, 1to find the solution.
We need to find the eigenvectors.
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.".. We have found two solutions

e—t e3t

20t T 26"

(e pe™) = (

j = det
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By Theorem 7.4.2, we know that any solution of X = AX
can be written as

! 3t ! 3t
| e [ ee ][ et ce
-2ce” ) \2ce”) | -2ce™ +2ce™

—¢ ( e ]+c EGBt J—cx(l)(t)+c X (1
Y2 1 | 2

—2e™ 2e”
1) (2 e e 2t 2t 2t
W (X", X ):23t ) | =—2e"—-2e" =—4e” 20
e’ -2e

. 2 .
X and x¥ from a fundamental set of solutions.
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The case n=2 1s special, if we let

(2] = (G IE

There are two ways to visualize the solutions
1 © To visualize solutions m XX, - plane,

this 18 so called the phase plane
2 - To visualize solutions as functions of t.
[f we want to visualize the behavior of solutions
In XX, - plane,

X, =C g +cg" X,=2C g" —-2cg"

P7-4



How to get a relation between X, and X, 7

2%, + X ,=4c e 2% +X, =—4ce”

S (2% + X)) (2%, +X,)° = constant =C

We draw the curves of X, X, according to different values of C.

When ¢ =0, we have two straight lines
2% +X%X, =0, 2% +X,=0

(2%, +X,)(=2% +X,)° =¢C aey

).(1 — X1+ X > x

X, =4 X+ X 72
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To determine how X;,X, behave as t increases,

we look at the solution formula

x,=Ccg'+ceg"’, x,=2c,e"-2ce™

| X, =C,e"
For the points on 2X, + X, =0, .
X, =—2C,e

then (X,X,) >0 as t—oo0,

3t
| =C.e

For the points on —2x, +X, =0, & ' 3t
X, =2C,e

then (X,X,)—>300 as t—>oo,

Then we can draw the phase space diagram.
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Remark -
To draw the phase space diagram, we need to solve the
problem first. Without solving the problem we can also
draw a rough picture by using the concept of direction field.

{ X = X+ X 42
_— 5;'4\
X, =4 X+ X 4“&,) .
. | Lyy YA 27
In each pomnt (X;,X,) mthe phasespace, _ ¢y & L 7244 o
we assoclate 1t with a unit tangent vector {4 ¥ LA
| o ife AV5
in the direction of (X +X,,4X +X,) . e N
L) — (2,5 e

(L0) - (L4) de, 4%+

The direction field describes the rough behavior of solutions.
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Example 2: Direction Field (1 of 9)

Consider the homogeneous equation x' = Ax below.

(11
X = X
41

A direction field for this system 1s given below.
Substituting x = €e¢™ in for x, and rewriting system as

(A-rI)§ = 0, we obtain

1-r 1 & 0 SRR RIS S A AR U
/ .‘ “ J / ' ) [ \ . / 4 p / 4 4 J | | .( /

4 1-rie 0 AES R R SR A
AR e IS AR R

,,,,,,,,,,,,,,, o TS | | o TN

¥ Al 0 0

......
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Example 2:
Time Plots for General Solution (9 of 9)

The general solution is x = ¢, xM + ¢, x():
1 1 X, (t ce’ +ce”
X(t)=cy| " +¢, e’ O - 13t ’ t

As an alternative to phase plane plots, we can graph X, or X,
as a function of t. A few plots of x, are given below.

Note that when ¢, =0, x,(t) =c,et—>0ast — .
Otherwise, x,(t) = c,e3 + c,et grows unbounded as t — .
Graphs of x, are similarly obtained.




Example 3: Direction Field (1 of 9)

Consider the homogeneous equation x' = Ax below.

(=3 42 X, = —=3X, +V2X,
X' = X
V2 =2 X, =\ 2X, —2X,

A direction field for this system is given below.
Substituting x = &e" in for x, and rewriting system as
(A-r1)€ = 0, we obtain A ST

""""""""""

[_3_r N [élj_(oj S e
2o —2-rla) o) [Sesaelieea

......

\\\\\\\\\\
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Example 3: Eigenvalues (2 of 9)

Our solution has the form x = &e™, where r and & are found

by solving
IR HE
\/5 —2—-r 51 0
Recalling that this is an eigenvalue problem, we determine r
by solving det(A-rl) = 0:

_3-r 2

5 oy =(-3-r)(-2-r)—-2=r"+5r+4=(r+1)(r +4)

Thusr,=-1landr, = -4.
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Example 3: First Eigenvector (3 of 9)

Eigenvector for r, =-1: Solve

oo (%2 S0 (2 TEH

by row reducing the augmented matrix:

2 2 oj_{ 1 —2/2 OJ_)[l —J212 o}
J2 -1 0 J2 -1 0) o 0 0

N212& 1
M _ 2 1) _
—§ _L 52]—>choose§ _[ﬁj
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Example 3: Second Eigenvector (4 of 9)

Eigenvector for r, = -4: Solve

oo (45 B[S (2 TEHE

by row reducing the augmented matrix:

( 1 V2 Oj_)(l J2 o]_)g(z)_ -2¢,
V2 20/ lo 0o L g

— choose £? = [_
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Example 3: General Solution (5 of 9)

The corresponding solutions x = Ee™ of X' = Ax are

(1) . 1 —t (2) . _\/E —4t
X (t)_[ﬁje , X (t)_( Je

The Wronskian of these two solutions is

-t 4t
W Ix® ’ x (2) ](t) _ € \/Ee — 3t £
J2e™ e ™

Thus x®) and x@ are fundamental solutions, and the
general solution of X' = AX IS

X(t) = c,x® (1) + ¢, x? (t)

— ¢ ( 1je‘ +C L_ \/Eje‘“
1 \/E 2 1
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Example 3: Phase Plane for x() (6 of 9)

To visualize solution, consider first x = ¢, x(%:

X (t) = (:j = cl( \/Eljet & X =ce’, x,=+2ce™
Now
Xl
Cl
Thus x® lies along the straight line x, = 2* x,, which is the
line through origin in direction of first eigenvector @)

If solution is trajectory of particle, with position given by
(X1, X,), then 1t is in Q1 when ¢, > 0, and in Q3 when ¢, <0.

In either case, particle moves towards origin as t increases.

x,=ce", X, =+/2ce™ < el =

X
= = X, = \/EX
\/Ecl 2 1
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Example 3: Phase Plane for x@ (7 of9)

Next, consider X = ¢,x:

X _
X2 (t) = (xlj N 02[ \/ﬁJem o X =2, x,=ce"
2

Then x@ lies along the straight line x, = -2 x,, which is the
line through origin in direction of 2nd eigenvector &)

If solution is trajectory of particle, with position given by
(X1, X,), then 1t 1s In Q4 when ¢, > 0, and in Q2 when ¢, < 0.
In either case, particle moves towards origin as t increases.
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Example 3:

Phase Plane for General Solution (8 of 9)

The general solution is x = ¢, xM + ¢, x():

xP (t) :£ \/Eljet, X (t) :[

As t — oo, ¢, x is dominant and ¢,x®? becomes negligible.
Thus, for ¢, # 0, all solutions asymptotically approach

origin along the line x, = 2% x, as t — oo.

Similarly, all solutions are unbounded as t — - oo.

The origin is a node, and is
asymptotically stable.

2

1
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Example 3:
Time Plots for General Solution (9 of 9)

The general solution is x = ¢, xM + ¢,x():

1) _ —J2) ) (cet—+2c,e™
X(t)=c et +c e o | U= 2
() 1(\/5) 2[ ]J (Xz(t)j {ﬁclet+cze4tJ
As an alternative to phase plane plots, we can graph X, or

X, as a function of t. A few plots of x, are given below.
Graphs of x, are similarly obtained.
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2 X 2 Case:
Real Eigenvalues, Saddle Points and Nodes

The previous two examples demonstrate the two main cases
for a 2 x 2 real system with real and different eigenvalues:

— Both eigenvalues have opposite signs, in which case origin is a
saddle point and is unstable.

— Both eigenvalues have the same sign, in which case origin is a node,
and is asymptotically stable if the eigenvalues are negative and
unstable if the eigenvalues are positive.

x1(z)




We conclude this section with the general system
X = AX A  nNxn matrix

So far we are still in the case of n distinct and real eigenvalues.

So to find the solutions, we proceed as before -
1) Find the eigenvalues r,---,r, by solving the algebraic equation

det(A—rl)=0

2) Find the eigenvectors &+, ™ associated with 122",

Note that &®,---,&™ are linearly independent.
.". The corresponding solutions of the system are
X(l) ('[) _ 5(1)er1t e X(n) ('[) _ g(n)efnt.
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To show that X& (t),---,x™(t) for a fundamental set
of solutions, we compute their Wronskian *

51(1)er1t . gl(n)ernt

W[x(l),---,x(”)](t)

én(l)erlt .o gn(n)ernt

1
51( S fl(n)

1
gn( b én(n)

"

4

=0 ('." independent)
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3) Now we can form the general solution of the system

x=cEWe™ 4.4 EMe

Remark
[f A 1sreal and symmetric, then all eigenvalues are real.
Even if some of the eigenvalues are repeated, there 1s still

a full set of n eigenvectors &W,---, &M,
So the solution formula 1s still valid.
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Ex * Find the general solution of X =

so] - -

det(A—Al)=det| 1
1

1
-1
1

0 1 1)
1 0 1i|x
1l 1 0,

1)
1 [=0
_/1)

= A H14+14+ A+ A+ A=-2"+31+2
= (AP -31-2)=—(A+1)(22 - A-2)
— _(A+D)(A+D)(A—=2) = (1 +1) (1 -2)

oA=-1-12
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101 1] &® ]
Tofind &9, wesolve |1 1 1| &% =0
111 53(1)
LGS+ g =0
(1) (0 )
. Wecanchoose &% =| 0 | and &% =] 1
L) L
2 1 17(&9]

For A=2,wehave | 1 -2 1| &° =0
1 1 2 &Y

1)
' _251(3) +§2(3) +§3(3) -0 = 5(3) —11

3 P11-2



.. The general solution can be written as

X(1)= ¢

1)
0

1

e+

2

0)
c 1 &

1
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