0.3 Locally linear system

In the previous sections, we have describe

the stability properties of the equilibrium

solution X=0 of the 2D linear system
X = AX (A nonsingul



Theorem 9.3.1

The critical point Xx=0 of the linear system X = AX
(1) asymptotically stable (A.S.) if the eigenvalues T, ,

are real and negative or have negative real parts;
(2) stable but not A.S.if r, & I, are pure imaginary;

(3) unstable 1if r, & r, are real and either 1s positive,

or 1f they have positive real part.



Q - How about the stability 1ssue for nonlinear syste

x=1(x) x=0 is an isolated critical point
4 = :
\f(O):O 1S dl 1SOldicd Criticdl poin

We consider the case

(X = AX+ g(X) | N |
4 0 X=0 1s a critical point.




Assume the components of g have continuous

first partial derivatives and

then such a system 1s cal

H (X)H >0 as X
X
led an almost linear syster

1n the neighborhood of t|

ne critical

point X=0,




Ex :
%=y

) . 2 ~F 2 1 2,3
Yy =—w SiNX—ry=—w x+§a) X"+

(motion of a pend

.

Show that the system 1s locally linear near the origin.
so] :
The critical points are (X, Y) such that

y=0
—w’sinXx—ry=0=—w"sin X

X=xnmz — 1solated critical point



R o

'

- V -
linear nonlinear

gl(x,y)zo
92(X,y):—a)2(sinx—x)z—w2_l s X—=0

(X=rcosé y =rsiné)

19.(x. )| _ —e®r® cos®
G0/ I

/r—>0 as r—0

. Tt 1s an almost linear system near the origin.



93 #8
(X =X—X2— Xy 1 0)/, [ xP—xy )
1.1 1., 3 1 ( j— 1, 3

_Ty_Zy2_” 0 = —y2 2
Y=3973Y 7Y U 2 27 "aY

y

\

g,(X,y) = X* —xy = r*(cos” & —sin 9 cos )

g,(x,y) = %(rzsin2 6’)—%r2 sin @cos @ :%rzsin 6(sin@—3cos6)

ol Vo) +g,°

—>0 as r—0
IX| r



(x—x2—xy =X(1-Xx—Y)
11

= X=0 or x+y=1

Zy(2_y_3x):o = y=0 or 3x+y=2
1) x=0, y=0
2) x=0, 3x+y=2 = y=2 .. (0,2

B) y=0, x+y=1 = (x,y)=(1,0)
4) x+y=1, 3x+y=2 = 2x=1 = x:% Y



Theorem 9.3.2

x=Ax (1) x=Ax+g(x) (2)

Let I, & 1, be the eigenvalues of the linear system (1)
corresponding to the locally linear system (2).

[t both r, & r, have nonzero real parts, then the stabiliti
of the fixed point X=0 are the same in (1) & (2).



« Moral of the story :

To determine the stability of x=0 for (2), we j

need to determine the stability of x=0 for (1)
1f the eigenvalues have nonzero real parts.



\

Nonlinear system and stability — general setting

Given a nonlinear system - X=f(x) , x € R"
Let X, be afixed point, 1.e. f(x,)=0.

Q - How do we study the stability of the fixed point 7

We want to understand how solutions behave near a special solution.
(1) Solve the system 1f we can.
(2) Polar coordinates for n=2,
(3) Linearization.

(4) Liapunov function.

(5) Numerical simulation.



Recall
Taylor's theorem 1n two variables

f(x+h,y+k)

= (X, y) +hf (X, y)+kf, (X y) +% (h*f, +2hkf,, +k°



X=X—Vy°
Ex © Find the linearization of Y ,around the fixed p
y=X—-2Y+2X

and determine the stability of the critical point by the linearized system.

so]

x—y?=0 = x=Yy°
solve , , .
X-2y+2x"=0 = y -2y+2y" =0

= 2y +y° -2y =y(2y’+y-2)=0

(0,0) is a fixed point.




X=f(xy)=x=y", y=9(xy)=x-2y+2x’

The linearization around (0,0) is

. _ of of oo O

Xx=f(x,y)= f(0,0)+ (0,0)x+ay(0,0)y e 1, &

V=q(x,y)= g(OO)+ (OO)x+ 900y = P_11
oy OX

X = X
" { , 1s the linearized system.
y=X-2Yy



Check the eigenvalues of the system

(MG 2= = 2

= 1*+1-2=0 = (1+2)(1-1)=0
= A=-2,1
.". The linearized system has an unstable saddle point at (O,

so does the nonlinear system.



Nonlinear system and stability

We begin with linearization at a fixed point.
)-(1 — eX1+X2 _ X2 — f (X]_1 X2)

. has only one fixe
Xp ==X+ XX, = 9(X, %)

Ex ' Show that the system {

Find the linearization at that point.
so] °

eX1+X2 — X2 — O (1)

To find the fixed points, we solve {
X% =0 ()




Form (2), we get —X, + XX, =0=X,(X, —1)
ox=0or x,=1

X =0, substitute into (1), we get €% —x, =0 = no solution
- X, =1, """ -1=0 Joox =-1

.". The only fixed pointis (-1,1).

In order to study stability of (—=1,1), we try to find the linearization at that point.

v X1+X2_ _ _ _ i _ i _ _
X =e X, = f(x,%) = f( 1’1)+8x1( 1’1)()(1+1)+8x2( 1,2)(x, —1)+0(r

=(X1_1)+0(r2)
. og ag 2
X2 =—X1-|-X1X2 — g(_1,1)+&(—1,1)(x1 +1)+87(_1,1)(X2 —1)+O(r )

2

=—(X, —1)+0(r2)



Since we want to know the stability (-1,1), 1.e.,

we'd like to know what happens to the point near (-1,1) .
So 1t 1S convenient to introduce the change of variables

Yy =% +1 Y, =X, —1
Then the equations of 'y, and Y, become

Y, =V, Y, ==Y, (linearized)
S (0 %)=(-1) < (v,,Y,)=(0,0) is a saddle point.

(unstable)



).(1=f(X1’X2) Xzzq)f’ %

If f(x,%X,)=0=09(x,X,), then the linearization of this sy
around the fixed point 1s

of of

OX,  OX,

ag  dg
OX,  OX, |

%

X

(0,0)

Q - What happens if the fixed point is at (c,,C,) ?




f (Cl’CZ) =0= g(cl’cz)

(of  of )
L A I6) AG) &
Then the linearization around (C;,C,) 1s X= 0 o

\axi axz )(%Cz)

: : Y| [ A—G - .
[f we ntroduced the variables = = Y=Ay=
Y X, =G,




HW :
Find the linearization of the following systems at the indicated fixed p

oy KX
h TR XY L at (0.0)
X, = 2%, —3X,

v 2 - .
i {xl—x1 +sinx, -1 Cat (1L0)
X, =sinh(x, —1)

Q  After we know how to linearize equations, what can we do with t
linearized system 7



Linearization Theorem

[ et the nonlinear system X = F(X) has a simple fixed point at X

Then 1n a neighborhood of the origin the phase portraits of the syste
1ts linearization are qualitatively equivalent provided the linearized s

1s not a center. (Hartman-Grobman Theorem)



Q * What is the moral of the story ?

Remark -
[f the e1genvalues of the linearized system have non-zero real
the phase portraits of the nonlinear system and its linearization a
qualitatively equivalent in a neighborhood of the fixed point.
Such fixed points are said to be hyperbolic.
Hyperbolic fixed points are robust !
Centers are easy to change !



Ex : Nonlinear (Hyperbolic) Linearized

3

{X1:X1_X2 ’ X2:X2+X13} {).(1:)(1’ X5 )}2

For the nonlinear system, the stability of a hyperbolic fixed point can be
determined by the linearized system.

Q © How about a center ?



Ex :

4

X ==X % (X% +X,)

X, =% + )(2()(12 + X22)

(Nonlinear)

5
Xl ==X,
X, =%
(Linearization)




%
X, =—X, — X (X° +X,°) X, ==X, — X, (X° +X,°)
Xz :X1_X2(X12+X22) Xz :_)(1‘|')(1(X12‘|'X22

(Nonlinear) (Nonlinear)



Ex ¢ Use the linearization theorem to determine the local phase po

(, =X +4x, +e* -1
of the system Xl g ’ at the origin.
X, = —X, — X,€"

sol :

N B

nonlinear



Note (0,0) is a fixed point.

The linearization around (0,0) is

(of  of )
B P b i
X, ) a9 99 X, ) —X,e" —l-e* 0.0 \ 2
L OX,  OX, ) 0.0)

A=2, -2 = saddle point

.. (0,0) 1is also an unstable fixed point for the nonlinear system.



Ex ¢ Use the linearization theorem to classify the fixed points of the syst

{Xlzsin(x1+x )=f

X, =X, =0
so] -
. . . sin(x, +X,)=0
First solve the fixed point of the system 0
X, =

sinx =0 = x =%nz (X, %) =(£nx,0)

of  of |
A OX,  OX, | |cOoS(X +X,) cos(x+X)| (-1 -1

|og og | 0 1 0 1
| O OX, |

o (-1-40)1-4)=0 = A=-11 = unstable



HW :
Use the linearization theorem to classify, where possibl
the fixed points of the systems -

y [e=r
X, =X — X, &

b <>.<1= —X, +X +X
K= XK= X — %2




