
Chapter 7.   
 

          Systems  of  first  order  
         linear  equations. 
 

 

授課教師：張乃珩 



• The mathematical problems for many physical 

phenomenon consist of a system of two or more 

differential equations.  

  

• In this chapter, we show you how to solve this 
kind of problems. 

 



7.1  Introduction 
 

• In this section, we first give some simple 
examples then give a brief introduction on the 
systems of differential equations. 

 

 



Example  1 
 

Consider the spring-mass system. 

 

  Tow masses move on a frictionless surface under  

the influence of external forces 
1(t)F  and 

2(t)F ,  

and they are also constrained by the three springs  

whose constants are 
1k ,

2k  and 
3k . 



  Then the system of differential equations describing this  

physical system can be written as  
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Where       t ： independent variables 

            
1 2,x x ： dependent variables. 
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Example 2 
   Consider the parallel LRC circuit, let V be the voltage drop across  

the capacitor and I be the current through the inductor. 

 

  Then the system of equations can be written by 
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where   L  is the inductor, 

C  is the capacitance, 

          R  is the resistance. 



Basic  theory 
 Def： The system of first order equation is of the form： 
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∙ If each of the functions 
1,..., nF F  is a linear function of the dependent variables 

1 2, ,..., nx x x , then the system of equations is said to be linear；Otherwise, it is 

nonlinear. 

∴ The most general system of n first order linear equations has the form 
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∙ If each of the functions 
1(t),..., (t)ng g  is zero t I  , then the system is 

homogeneous；Otherwise, it is non-homogeneous. 



Remark：  

   One reason why system of first order equations are  particularly  

   important is that equations of higher order can always be transformed 

   into such systems. 

 
Ex： 0.125 0u u u    , Rewrite this equation as a system of first order 

 equations. 

sol： Let 
1x u  and 

2x u .  We try to derivate a system of two equations 

for 
1x  & 

2x  from the ODE. 

∵ 
1 2

2 2 10.125 0.125

x u x

x u u u x x

 

      
       

∴ 0.125 0u u u      ⇔  
1 2

2 1 20.125

x x

x x x




  
 

   (second order ODE)          (system of two first order ODEs). 



Generalization 
 

                      
1x 2x   

nx  

           ↓↓…↓ 
(n) (n 1)(t, y, y ,...y )y F    ⇔  system of n first order ODEs.  

(nth order ODE)            How? 

 

  To transform an arbitrary nth order equation into a system of  

n first order equations, we introduce the variable 
1 2, ,..., nx x x  

defined by 
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  To find the system of differential equations for 
1 2, ,..., nx x x ,  

we just differentiate and get   
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∴ The transformed system is 
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Solutions  of  First  Order  Systems 
 

 
 

Basic theory： 
 

． A system of simultaneous first order ordinary differential 

equations has the general form 
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It has a solution on I： t    if there exists n functions 

             
1 1 2 2( t ) , ( t ) , . . . , ( t )n nx x x      

that are differentiable on I and satisfy the system of  

equations at all points t in I. 

． Initial conditions may also be prescribed to give an IVP： 

             0 0 0
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Theorem  7.1.1 
 

． Suppose 
1,..., nF F  and 1 1

1 1

,..., ,..., ,...,n n

n n

F FF F
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 region R of 
1 2... nt x x x -space defined by 

1 1 1, ,..., n n nt x x           , 

and let the point         0 0 0

0 1 2(t , , ,..., )nx x x   

be contained in R.  Then in some interval 
0 0(t h, t h)   there exists  

a unique solution 
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that satisfies the IVP.      
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Linear  Systems 
 

． If each 
kF  is a linear function of 

1 2, ,..., nx x x , then the 

system of equations has the general form 
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． If each of the (t)kg  is zero on I, then the system is 

homogeneous, otherwise, it is non-homogeneous. 



Theorem  7.1.2 
 ． Suppose 

11 12 1, ,..., , ,...,nn np p p g g  are continuous on an  

interval I： t    with 
0t  in I, and let  

                  0 0 0

1 2, ,..., nx x x  

prescribe the initial conditions.  Then there exists a unique 

solution 

              
1 1 2 2( t ) , ( t ) , . . . , ( t )n nx x x      

that satisfies the IVP, and exists throughout I. 
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7.2 - 7.3  Review of matrices. 
 We will skip most topics on basic theory in linear algebra and will talk about only some 

important ones. 

． Let A be an m n  matrix. 
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． transpose of A： T  

      T

i j j ia a      

． Conjugate of A：   

    ija   

． adjoint of A：  
T
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• A system of n linear equations in n variables, 

 

 
 

 

 

 

 can be expressed as a matrix equation Ax = b: 

 

 

 

 

 

• If b = 0, then system is homogeneous; otherwise it is 
nonhomogeneous.  
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Nonsingular Case 
 

• If the coefficient matrix A is nonsingular, then it is 

invertible and we can solve Ax = b as follows: 

 
 

• This solution is therefore unique.  Also, if b = 0, 

   it follows that the unique solution to Ax = 0 is  

   x = A-10 = 0.  
 

• Thus if A is nonsingular, then the only solution to 

Ax = 0 is the trivial solution x = 0.  

bAxbAIxbAAxAbAx
1111  



Singular Case 
 

• If the coefficient matrix A is singular, then A-1 does 
not exist, and either a solution to Ax = b does not 
exist, or there is more than one solution (not unique).  

• Further, the homogeneous system Ax = 0 has more 
than one solution. That is, in addition to the trivial 
solution x = 0, there are infinitely many nontrivial 
solutions. 

• The nonhomogeneous case Ax = b has no solution 
unless (b, y) = 0, for all vectors y satisfying A*y = 0, 
where A* is the adjoint of A.   

• In this case, Ax = b has solutions (infinitely many), 
each of the form x = x(0) + , where x(0) is a particular 
solution of  Ax = b, and  is any solution of Ax = 0.   



Eigenvalues and eigenvectors 
 

． Diagonal matrix 
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Q： What about an arbitrary matrix 
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    then clearly 11j je a e  . 

 

Def：   is an eigenvalue of A if   nonzero solution    

      ,( )nn n   ： R , 

      where   can be complex numbers, and   is called  

the eigenvector corresponding to that eigenvalue. 



Remark： 

  ． Let A be a 3 3  matrix.   

． Suppose 
1 2 3 1 2 3, , , , ,       

1 1 1,     

2 2 2 ,   3 3 3   .  

． Then A〝looks like〞a diagonal matrix in the coordinates 

 1 2 3, ,   . 

 



Q： How to find   &        ? 

0          ( ) 0      

∴ If   a nonzero solution   

    is singular    d e t ( ) 0     

After   is found, we can find   by solving    . 

 

Def：  

The equation det( ) 0    is a polynomial of degree n  

in   and is called the characteristic equation of the matrix A. 



Example 4: Eigenvalues (1 of 3) 

 

• Find the eigenvalues and eigenvectors of the matrix A. 

 

 
 

• Solution:  Choose  such that det(A-I) = 0, as follows. 















24

13
A

 

     

  

1,2

122

4123

24

13
det

10

01

24

13
detdet

2


































































IA



Example 4: First Eigenvector (2 of 3) 

 

• To find the eigenvectors of the matrix A, we need to 

solve (A-I)x = 0 for  = 2 and  = -1.  

• Eigenvector for  = 2:  Solve 
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Example 4: Second Eigenvector (3 of 3) 

 

• Eigenvector for  = -1: Solve 

 

 
  

 

  and this implies that          .  So 
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Normalized Eigenvectors 
 

• From the previous example, we see that eigenvectors 

are determined up to a nonzero multiplicative constant.   

 

• If this constant is specified in some particular way, 

then the eigenvector is said to be normalized.  

 

• For example, eigenvectors are sometimes normalized by 

choosing the constant so that ||x|| = (x, x)½  = 1.   



Algebraic and Geometric Multiplicity 
 

• In finding the eigenvalues  of an n x n matrix A, we 
solve det(A-I) = 0.   

• Since this involves finding the determinant of an n x 
n matrix, the problem reduces to finding roots of an 
nth degree polynomial.   

• Denote these roots, or eigenvalues, by  1, 2, …, n.   

• If an eigenvalue is repeated m times, then its 
algebraic multiplicity is m.   

• Each eigenvalue has at least one eigenvector, and a 
eigenvalue of algebraic multiplicity m may have q 
linearly independent eigevectors, 1  q  m, and q is 
called the geometric multiplicity of the 
eigenvalue.  



Eigenvectors and Linear Independence 
 

• If an eigenvalue  has algebraic multiplicity 1, then 

it is said to be simple, and the geometric 

multiplicity is 1 also.  

• If each eigenvalue of an n x n matrix A is simple, 

then A has n distinct eigenvalues. It can be shown 

that the n eigenvectors corresponding to these 

eigenvalues are linearly independent.  

• If an eigenvalue has one or more repeated 

eigenvalues, then there may be fewer than n linearly 

independent eigenvectors since for each repeated 

eigenvalue, we may have q < m.  This may lead to 

complications in solving systems of differential 

equations.  



Hermitian   Matrices 
 

• A self-adjoint, or Hermitian matrix, satisfies A = A*, 

where we recall that A* = AT .   

• Thus for a Hermitian matrix,  aij = aji.  

• Note that if A has real entries and is symmetric (see last 

example), then A is Hermitian.   

• An n x n Hermitian matrix A has the following properties: 

-  All eigenvalues of A are real. 

-  There exists a full set of n linearly independent eigenvectors of A. 

-  If x(1) and x(2) are eigenvectors that correspond to different 

eigenvalues of A, then x(1) and x(2) are orthogonal.  

-  Corresponding to an eigenvalue of algebraic multiplicity m, it is 

possible to choose m mutually orthogonal eigenvectors, and hence 

A has a full set of n linearly independent orthogonal eigenvectors. 


