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The mathematical problems for many physical
phenomenon consist of a system of two or more
differential equations.

In this chapter, we show you how to solve this
kind of problem:s.



7.1 Introduction

In this section, we first give some simple
examples then give a brief introduction on the
systems of differential equations.



Example 1

Consider the spring-mass system.
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Tow masses move on a frictionless surface under
the influence of external forces F(t) and F,(t),

and they are also constrained by the three springs
whose constants are K,,K, and Kk;.



Then the system of differential equations describing this
physical system can be written as

e

d°x,
m, F =K, (X, = %) —K; X + F ()
— _(k1+ kz)xl + k2X2 + Fl(t)
<
d°x,
m, dt2 =—K; %, =k, (X, = %) + K, (1)
L = k2X1—(k2-|-k3)X2 + Fz(t)
Where t ° 1ndependent variables

X, X, * dependent variables.

X, (£), X, ()



Example 2

Consider the parallel LRC circuit, let V be the voltage drop across

the capacitor and I be the current through the inductor.
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Then the system of equations can be written by

(dl Vv
Jdt L
av 1 v
ldt C RC

where L 1s the inductor,
C 1s the capacitance,
R 13 the resistance.



Def :

Basic theory

The system of first order equation 1s of the form :

X, =F (X, %X,,....X )
X, = F, (4, X, Xy, X))

X, =F (t,X,X,,...;X,)

If each of the functions F,...,F, 1s a linear function of the dependent variables
X.» Xy,.0+, X, , then the system of equations 1s said to be linear ; Otherwise, it 1s

nonlinear.

". The most general system of n first order linear equations has the form

X = P (OX +...+ py, (DX, + 9, (1)
X, = Py (D)X +.o 4 Py, (DX, + 9, (1)
X, = P ()X +...+ P (DX, +9,(1)

If each of the functions g,(t),...,d,(t) is zero Vtel, then the system is
homogeneous ; Otherwise, it 1s non-homogeneous.



Remark -
One reason why system of first order equations are particularly
important 1s that equations of higher order can always be transformed
1nto such systems.

Ex ¢ u”"+0.125u’+u =0, Rewrite this equation as a system of first order
equations.
sol © Let x,=u and X,=U. We try to derivate a system of two equations
for X, & X, from the ODE.

X =U=X,
X, =U =-0.1250 —u =-0.125%, — X,

X =X,

. u"+0.1250"+u=0 & .
X, ==X —0.125X,

(second order ODE) (system of two first order ODESs).



Generalization

X X,
b))
y? =F(tyY,..y"?) & system of n first order ODEs.
(nth order ODE) How?

To transform an arbitrary nth order equation into a system of
n first order equations, we introduce the variable X, X,,..., X,

defined by
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To find the system of differential equations for X, X,,..., X

n o

we just differentiate and get
Xl =y= X,
X, =Y =X

Xn_l _ (y(n—Z))r _ y(n—l) — X

n

% =y0 = FLY.Y,..y"")
=F(tX,%,..., X,)

". The transformed system 1S

X =X,
X5 =X
Xn—l = Xn

X, = F (06X %5000 %)



Basic theory

Solutions of First Order Syste

A system of simultaneous first order ordinary differential
equations has the general form

X =R (X, %, %)

X =F (t,X,%X,,...,; X.)

[t has a solution on I : @ <t< f if there exists n functions
X =¢1(t))§ 2:¢ 2 (t)xn';'¢h

that are differentiable on I and satisfy the system of

equations at all points t in I.

[nitial conditions may also be prescribed to give an [VP -

X (to 2X"0% 5 (BEX" 5 %o 5X(



Theorem 7.1.1

oF, OF OF, OF
Suppose F,...,F, and —%,..,—% . )

, are continuous 1n the
ox, OX, OX  OX

n

region R of t XX,...X -space defined by
a<t<f,o <X <P, <X <pf,
and let the point (L X3 X5 e X )

be contained in R.  Then in some interval (t,—h,t,+h) there exists
a unique solution
X=¢{tX =¢ , (1)%.=4
that satisfies the IVP.
X1’ = F{LX X 1500 X,)
X, = F f{t,X ;X ,0, X.)

K, = Fy (65 X1 X,)



Linear Systems

If each F,  1s a linear function of X, X,,..., X, then the

system of equations has the general form
X1’ — pll(t)xl + p12(t)X2 ...t Py, (t)xn + gl(t)
X, = Py ()X + Po ()X, +.oo+ P, ()X + 0, (1)
Xo = P (X + P2 (X, +....+ Py, (DX, + 9, (1)

If each of the g, (t) 1s zero on I, then the system 1s
homogeneous, otherwise, it 1S non-homogeneous.



Theorem 7.1.2

SUppPose  Piys Proseess Pons Op»---» @, Are continuous on an
interval I © a<t<f with t, inI, and let

0 0 |
X,y Xy yeeey X,

prescribe the initial conditions. Then there exists a unique

solution

=0{tX =¢ , (1)%.=4
that satisfies the IVP, and exists throughout I.

Xl,:plqt))"l'p 1Q¢)+2+-pn Z(n-(g) 1
X =PLetX4p LK, +p, X H4)

Xo = P (X +p, , ) +py X, Hd)



7.2 - 7.3 Review of matrices.

We will skip most topics on basic theory in linear algebra and will talk about only some

1mportant ones.
Let Abean mxn matrix.

a; 9 ,
A= Ay 8y ot By,
a a a

ml

transpose of A : A’
Aefa) = (e )

Conjugate of A © A

A:(aij)

adjointof A © A =(aji)=A*
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A system of n linear equations in n variables,

A Xt Xyt +a X = b1

Ay, % +8,,X, +o0o+ 3, X, = b,

a, X +a, X, +-4+a, X, =D,

n,n’*n

can be expressed as a matrix equation Ax = b:

dip S, vt Ay )X bl
1 Ayp o Gy, | X _ bz
an,l an,2 an,n X, bn

If b =0, then system 1s homogeneous; otherwise it is
nonhomogeneous.



Nonsingular Case

If the coefficient matrix A is nonsingular, then it is
invertible and we can solve Ax = b as follows:

Ax=b = A'Ax=A"D =Ix=A"D =x=A"D
This solution i1s therefore unique. Also, if b =0,

1t follows that the unique solution to Ax = 0 1s
x =A10=0.

Thus if A 1s nonsingular, then the only solution to
Ax = 0 1s the trivial solution x = 0.



Singular Case

If the coefficient matrix A 1s singular, then A-! does
not exist, and either a solution to Ax = b does not
exist, or there 1s more than one solution (not unique).

Further, the homogeneous system Ax = 0 has more
than one solution. That 1s, in addition to the trivial
solution x = 0, there are infinitely many nontrivial
solutions.

The nonhomogeneous case Ax = b has no solution
unless (b, y) = 0, for all vectors y satisfying Ay =0,
where A” is the adjoint of A.

In this case, Ax = b has solutions (infinitely many),

each of the form x = x© + &, where x© is a particular
solution of Ax = b, and & 1s any solution of Ax = 0.



Eigenvalues and eigenvectors

/ail 0 0 3
Diagonal matrix A= 0 a, O
\ 0 0 Aa3 )
€;
(1) 0 ) )
e=|01] e=|1]¢€6=/| &
e
0 3 L ‘




Q - What about an arbitrary matrix

(8, @, - )

a, a, -+ a
N AN

anl an2 a‘nn

then clearly Ae; #a,€;.

Def © A 1saneigenvalue of A if 3 nonzero solution v
> Av=Av (A: nxn, veR"),
where A can be complex numbers, and v 1s called
the elgenvector corresponding to that eigenvalue.



Remark

Let Abea 3x3 matrx.

Suppose 3 v, V,, Vo, A, A, A 3 Av, =4V,
Av,=AVv,, Av,=4V,.

Then A “looks like” a diagonal matrix in the coordinates

Vi, vy, Vst v,



Q' Howtofind 4 & v > Av=Av ?

= Av-Alv=0 = (A-Av=0

. If 3 anonzero solution v

= A-Al is singular = detA A I)=

After A 1sfound, we can find v by solving Av=Av,

Def :
The equation det(A—AI)=0 1is a polynomial of degree n
in A and 1s called the characteristic equation of the matrix A.



Example 4: Eigenvalues @ of 3)

Find the eigenvalues and eigenvectors of the matrix A.

o

Solution: Choose A such that det(A-AI) = 0, as follows.

det(A—21) = det G __2}}{; m

3—1 —
= det
4 —2—&)

=(3-2)-2-4)-(-1)4)
=P -1-2=(1-2)1+1)
=> A=2,1=-1




Example 4: First Eigenvector @ of3)

To find the eigenvectors of the matrix A, we need to
solve (A-AD)x =0 for A =2 and 4 =-1.

Eigenvector for 4 = 2: Solve

oo s (U0 He= o Sl

and this implies that X =X, . So

X 1 1
x :( zj = c( ) ¢ arbitrary — choosex™ :[ j
X, 1 1



Example 4: Second Eigenvector (3 of 3)

Eigenvector for 4 = -1: Solve
3+1 -1 X, 0 4 -1\ X 0
oo = [y Hal= (s GG
4 —-24+1) X, 0 4 —1) X, 0
and this implies that % =% | So

X 1 1
x®@ = "tl=c| | c arbitrary — choose x®? =
4X, 4 4



Normalized Eigenvectors

From the previous example, we see that eigenvectors
are determined up to a nonzero multiplicative constant.

If this constant 1s specified in some particular way,
then the eigenvector 1s said to be normalized.

For example, eigenvectors are sometimes normalized by
choosing the constant so that | | x| | = (x, x)” = 1.



Algebraic and Geometric Multiplicity

In finding the eigenvalues A of an n x n matrix A, we
solve det(A-AI) = 0.

Since this involves finding the determinant of an n x
n matrix, the problem reduces to finding roots of an
nth degree polynomial.

Denote these roots, or eigenvalues, by 4, 4,, ..., 4.

If an eigenvalue is repeated m times, then its
algebraic multiplicity is m.

Each eigenvalue has at least one eigenvector, and a
eigenvalue of algebraic multiplicity m may have g
linearly independent eigevectors, 1 < q < m, and q 1s
called the geometric multiplicity of the
eigenvalue.



Eigenvectors and Linear Independence

If an eigenvalue A has algebraic multiplicity 1, then
1t 1s said to be simple, and the geometric
multiplicity 1s 1 also.

If each eigenvalue of an n x n matrix A is simple,
then A has n distinct eigenvalues. It can be shown
that the n eigenvectors corresponding to these
eigenvalues are linearly independent.

If an eigenvalue has one or more repeated
eigenvalues, then there may be fewer than n linearly
Independent eigenvectors since for each repeated
eigenvalue, we may have g < m. This may lead to
complications in solving systems of differential
equations.



Hermitian Matrices

A self-adjoint, or Hermitian matrix, satisfies A = A",
where we recall that A" = AT —

Thus for a Hermitian matrix, a; = a;—

Note that if A has real entries and 1s symmetric (see last
example), then A is Hermitian.

An n x n Hermitian matrix A has the following properties:
- All eigenvalues of A are real.
- There exists a full set of n linearly independent eigenvectors of A.

- If x® and x@ are eigenvectors that correspond to different
eigenvalues of A, then x and x® are orthogonal.

- Corresponding to an eigenvalue of algebraic multiplicity m, it 1s
possible to choose m mutually orthogonal eigenvectors, and hence
A has a full set of n linearly independent orthogonal eigenvectors.



