7.6 Complex eigenvalues

In this section, we consider the linear system X = AX

where A 1sa nxn real matrix and has complex eigenvalues.

To find the eigenvalues, we solve the following equation
det(A—-Al)=0

If A 1sacomplex number, then we also have
detA -1 1 )=

since everything else isreal. = A 1s also an eigenvalue.



To find the eigenvectors, we solve Av = Av
= Av=Av
. If v 15 an eitgenvector associated with A,

then V is an eigenvector associated with A

Q * What happens if A is not real ?

To solve the ODE, we use an example to illustrate
the 1dea.



Find a fundamental set of real-valued solutions of the system

Ex :
1y
X = 2 1 X
-1 —-=
2
: . . 1
sol - Let's try to find the eigenvalues first solve (_E ~1)°+1=0
A=ty
2
To solve the corresponding eigenvectors,
1 -2 Ly 1 V.
Av:(——+ijv = 2 ( 1j:(——+ij( 1)
2 1 11\v, 2 v,
1 1 : ) i
f— —EV1+V2:—EV1+|V1 . V2:|V1

.". The first etgenvector corresponding to the eigenvalue 18 (

1
|

J
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= 1
v V
.". To find the second, we have 2 ( 1]:(_£_ij( 1)

1 1. , :
T, =N, SV, =iy

1
The second eigenvector 18 ( ij'

.". The two 1independent solutions are the following
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To write them 1n terms of trigonometric functions

(1) = e_% (cost+isintj

Icost —sint
! !
— L/ cost—isint e 2cost | e ?2sint
X(t):e 2 . ] = + 1
—icost —sint L i
—e 2sint e 2 cost

Then the real and imaginary parts of X(t) are also solutions.

_t( cost L (sint
Let X, =€ ? |, X, =e° .
—sint cost

To check it they are linearly independent, we have

t t

e 2cost e ?sint|
W [x,x,](t) = =e" =0

t t
—e 2sint e 2cost
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.. To generate real-valued solutions, we just write

(0 e{ c, cost +c, sint

| = C,X, +C,X
—clslnt+czcost} B

Q - What about the stability of the fixed point X=0
as t increases ?

as t— oo, all solutions go to zero !
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Example 1: Direction Field (1 of 7)

Consider the homogeneous equation x’'= Ax below.

(12 1
X = X
( -1 —1/2j

A direction field for this system is given below.

Substituting x = Ee¢’ in for x, and rewriting system as
(A-rI)§ = 0, we obtain

“12-r 1 YE&) (0] iR
-1 -y2-rf&)\0)  ZZzziiIIEofRsanitll) )]

.......................

,,,,,,,,,

...........
....................

............

...........




Example 1: Phase Plane (6 of 7)

Given below Is the phase plane plot for solutions x, with

LA e 2 cost e e ?sint
X, \—esint) ‘le*?cost
Each solution trajectory approaches origin along a spiral

path as t — oo, since coordinates are products of
decaying exponential and sine or cosine factors.

The graph of u passes through (1,0),

since u(0) = (1,0). Similarly, the 0
graph of v passes through (0,1). S
The origin is a spiral point, and /— \} A

IS asymptotically stable. ( 5
(



Example 1: Time Plots (7 of 7)

The general solution is X = c,u + c,V:

‘o x(t)) [ ce?cost+c,e?sint
X,(t)) |—ce*sint+c,e™*cost
As an alternative to phase plane plots, we can graph x, or

X, as a function of t. A few plots of x, are given below,
each one a decaying oscillation as t — co.

1

%@‘\
W“"‘" ‘
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Real-Valued Solutions

Thus for complex conjugate eigenvalues r, and r, , the
corresponding solutions xM and x® are conjugates also.

To obtain real-valued solutions, use real and imaginary parts
of either x(M or x®), To see this, let §&Y) =a + ib. Then
x® =gWel™l — (@t ib)e* (cosut +isin ut)
—e*(acosut—bsin ut)+ie* (asin ut+bcosut)
=u(t) +1Vv(t)
where
u(t) =e*(acos ut —bsin ut), v(t) =e*(asin ut+bcosut),

are real valued solutions of x' = Ax, and can be shown to be
linearly independent.



Spiral Points, Centers,
Eigenvalues, and Trajectories

ulr)

- - //‘—_\2_
In previous example, general solution was /s

A e "'* cost e e ?sint =
X,) \—e*?sint) “(e™"?cost o\
The origin was a spiral point, and was asymptotically stable.

If real part of complex eigenvalues is positive, then
trajectories spiral away, unbounded, from origin, and hence
origin would be an unstable spiral point.

If real part of complex eigenvalues is zero, then trajectories
circle origin, neither approaching nor departing. Then origin
IS called a center and is stable, but not asymptotically stable.
Trajectories periodic in time.

The direction of trajectory motion depends on entries in A.
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7.7 Fundamental matrices

We consider the following linear system

X = p(t)x
/X1\ /p11 P, - p1n\/X1\
i X, _ Py oo = Py X,
gt | : . . .
\Xn) \pnl cee cee pnn)\xn)

Q * What is a fundamental matrix 7



Suppose  x® (1), x2(t), ---, x®(t) from a fundamental set
of solutions, where

X" (t)

X(i) (t) — XZ(i:) (t)

mda)

Then the matrix (X® (), X2 (®),---, x”(t))

M) %2 - x"()
|60 %0 - xfyo )
M) 2 - x"()

is called a fundamental matrix w(t).



Remark
A fundamental matrix 1s not unique !

% Claim :
Any fundamental matrix satisfies the matrix equation
w(t)=pOw(t).

Letususea 2x2 matrix to explain.

Suppose X & % are fundamental solutions

1 Xl(l
x 0t ) 1)
XZ
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Ao [%0)_(Pa P2 )(%”
dt Xz(l) p21 p22 X2(1)

. @) M) M
X = p, X" + p,X
1 11771 12772

(D (1) (1)
X2 = Pk + PXy

Similarly,

Pl op o opx
%' 2L p, x'F p,x

.. We can write 1t as a matrix equation

d(x® % [Py Py x®  x®
dt X2(1) X2(2) le p22 X2(1) X2(2)
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Ex ¢ Find a fundamental matrix for the system
(3 =2
X = X
2 -2
sol * To solve the linear system, we solve the eigenvalues and eigenvectors.

3-2 2| 2
=A?-A-6+4=2* -1 2 41 2)@ +1)

2 2-A

oA=2 or -1

3 =2\(V, v,
= 2 — 3Vl — 2V2 — 2V1
2 =2 )\, v,

2
= Vv, =2V, v:(lj
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1
= 4v, =2y, v=(j

262'[ e—t
". Two independent solutions are [ j and E j

e 2e!

". The fundamental matrix can be written as

292t e—t
W(t) - [ eZt 2et]

P4-2



3 -2
Verify w satisfies W=(2 ij

3 -2)\(2e* e ) (4" ) |
2 2 e 20t |20 _2g* g

. w(t) indeed is a fundamental matrix !

Note that any independent solutions can form fundamental solutions,
to make 1t unique, we need to specify additional condition.

Now we 1ntroduce a special one

(. (3 22
b = d
<
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The general form of a fundamental solution 1s

e 2ce” +c4etj (1 0
~t 2t ~t -
e Ce” +2c,e ) |

oy

2t
2ce” +cC,
ce’ +2c,

_ (201+c2

2C sC

c,+2C, C s2cC

D(t) =

0 1
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d(t) 1is just a fundamental matrix with a specific initial condition.
We can also specify the nitial condition at t=t;.

D(t) = p(t)D(t)

| 1, O(t) satisfi
n genera (t) satisfies { O(t) =1

Q : What's the use of ®@(t) ?

Consider the following initial value problem
X(t) = p(t)x

, then X(t) = D(t)
{ X(to) = Xo &

d(t) = p(t)D(t)

where ®@(t) satisfies { O(t) =1
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pf © Let X(t) = D(t)x,
= X(t) =O(t)x, = p(t)D(t)x, = p(t)x

Moreover, X(t,) =®(t,)x, =1-X, =X,
. X(t) solves the problem.
. If we find ®(t), we can solve X(t) interms of @(t).

There are three ways to compute D(t).

(1) We have computed the first method.
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2) Let x®(t)s be fundamental solutions of X = p(t)x.
Let w(t) = (x(l) ®), x?@),---, x® (t)), then any solution of X = p(t)x(t)

can be written by X(t) = ¢, x® () + ¢, x? (1) +---+ ¢ x" ()

C, L
C “
:[x(l), x® ... x‘”)] 2|=w()-c  where c=|
' C
_Cn_ - -

" X)) =w(t)c=x = C= v () " X
LX) =w () c =y (t) X, = D(t)X,
O =y (Ow(t)”

Incase t,=0, ®()=w(t)yw(0)™".

Hence we know how to compute @(t) from w(t).
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E‘)’(-B_Zx
A I S

Find @(t) suchthat ®(0)=1.

sol © From the formula, ®(t) =y )y (0)™".
.. First find a fundamental matrix w(t) , which we have done earlier.

2e” e (2 1y ., 12 -1
W(t)=[62t 2etj Then ',V(O)—(1 2], W (0)—5(_1 2]

1 462t 1e_t 2 2t 2 —t

2
o2 €3 3|3 T3 T3NS
e’ 27 1 2 2 2 1 4
- = —e"——e ——e"+—Ce
3 3) (3 3 3 @



(3) An alternative way to find ®(t)
Motivation - Consider a scalar mitial value problem
X= ax o
= X=e%X
X( 0k X, °
X=AX .
For a system o A i nxn constant matrix
x(0) = x
O =AdD
= x=®(t)x° where
d(0)=1
Q : Can we write X (t) 1in exponential form as we did for a scalar ODE ¢
i.e.,can we write €¥x° =x(t) ?
How do we define ™ for a matrix A ?
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% The matrix exp(At) =e™

t .
For the scalar €, we can use the power series

e"“=1+at4l 2a2t4—1 2t —|—1 "d -t
2| 31 n |
Now we generalize this idea for a matrix A
eAt:I+A—1|— 2K —1|— 3Ilﬁ---+—1+n TA--
2 3! n |
[f we differentiate the series term by term, we obtain
i(eAt):A+A2t+lAi 2 A
dt ! (n-1)
1 2 2 1 n— _
=A| [+ At+—At “+---+ A
2! n-1)!

Moreover, at t=0, e =1,
Ci)t = Ad eAt——CDt

. At .
. e gatisfies .
{ ®(0) =1 with ®(0) =1



Q : How to compute €* from the power series ?

A * By the Jordan form of A
Suppose A=TJT™
= A°=TIT'IT'=TI*T"

A"=TJ"T*

" eAt=I+At+iA2t2+---+lA”t”+---
2! n!
-1 1 — 1 nrp— ¢nl
=1+TJT t+§TJ T t i---+—|TJ T t"4-..
. n!

:T[I+Jt+l\]2t 2+---+1J”t”+--}T !
21 n!

— Te Jt T—l
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For diagonalizable matrix A (2x2)

AzT(ﬂl OjTl .'.J:(ﬂ1 O]
0 2, 0 4,

— e :I+Jt+%J2t2+---+iJ”t”+--.

nl

t O 242 ngn
I+ 21 -|—l ﬂlt 0 _|_..._|_i ﬂlt 0 ens
0 At| 21 0 A%° nf 0 AN
_1+ '[+l 2'[2+---+l "t ... 0
& 2!/11 n!ﬂl

0

1+12t+%/122t2 4o

1
—ﬁznt”+---
n!
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nxn diagonalizable matrix A
The final method to solve X = AX

A=T T .. x=TITX
= T%=JT'x = y=J
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eAt _ Te DtT—l

(2 3)

eZt

0

0
ot
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Q : What's the use of e™ ?

If we know the initial datais X,, then X(t) =e™Xx,.

Besides, €™

1s useful for the nonhomogeneous problem.



