
Chapter 9 
 

Nonlinear differential equations  
and stability 

 

授課教師：張乃珩 



9.1  The phase plane： Linear system 

Many differential equations can not be solved analytically. 

How can we get some qualitative information of the solution  

without solving the equation itself？ 

First we introduce the concepts of critical points and stability. 

 

Def： Autonomous system ( )x f x  

      non-autonomous system ( , )x f x t  



Def： The points where ( ) 0f x   are called critical points  

(equilibrium solutions) of the autonomous system. 

 

Def：  

1) A critical point 
0x  is said to be stable if 0, 0        

every solution ( )x t  satisfying 0(0) x    exists for  

all 0t   and 0( )t x    0t  . 

2) A critical point that is not stable is said to be unstable. 

3) A critical point 
0x  is said to be asymptotically stable if it is stable  

and 0lim ( )
t

t x


  



． In this section, we deal with the stability issue of the 2 2  linear system. 

． Consider x x   where A is a 2 2  matrix and nonsingular. 

Then the only critical point (equilibrium solution) is 0x  . 

． A vector solution 1

2

( )
x

x t
x


 

  
 

 of x x   can be considered as a  

parametric representation for a curve in the 
1 2( , )x x  plane. 

This curve is regarded as the path, or trajectory of a moving particle whose  

velocity 
dx

dt
 is specified by the differential equation. 

． The 
1 2( , )x x  plane is called the phase plane and a representative set of  

trajectories is referred to a phase portrait. 



Ex： 
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 is a solution of the ODE. 

What is the curve described by the parametric representation？ 
2 2 2 2

1 2 1 2x x c c c    , ∴ the trajectory is a circle for different value of c . 

↑ phase plane 

phase portrait 



Now we will discuss these issues in details according to the signs of the eigenvalues. 

 

Case 1： Real unequal eigenvalues of the some sign. 

Let the solution of x x   be 1 2(1) (2)

1 2( )
r t r t

x t c e c e     

where 
1r  and 

2r  are eigenvalues of  . 

Suppose 
1 2,r r  are both negative. 

Regardless of the values of 
1c  and 

2c , all solutions  

tend to zero as t   

∴ The critical point 0  is asymptotically stable. 

• If we look into the details of the solutions, suppose 
1 2 0r r  ,  

∴ the solution can be written as  
1 2(1) (2)

1 2( )
r t r t

x t c e c e   1 2(1) (2)

1 2( )
r t r t

x t c e c e    



From the expression, we can see that as t  , the first  

term 1 2( )(1)

1

r r t
c e   is negligible compared to (2)

2c  . 

∴ as time is big, all the solutions tend to zero in the  

direction of (2) , 
2r  is the dominant eigenvalue. 

This type of critical point is called a node or nodal sink. 

 

• If 
1r  and 

2r  are both positive and 
2 10 r r  , then the solution  

has the same pattern. 

The only difference is that the direction is just the opposite. 

In this case, the critical point is called a nodal source. 

 2 1 2( )(1) (2)

1 2( )
r t r r t

x t e c e c 
   



Case 2： Real eigenvalues of opposite sign 
1 2(1) (2)

1 2( )
r t r t

x t c e c e    where 
1 0r   and 

2 0r  . 

 
The critical point is called a saddle point. 



Case 3： Equal eigenvalues 

Now 
1 2r r r  . 

We may suppose 0r  . 

For the other case, we only need to reverse  

the direction on the trajectory. 

A) There are two independent eigenvectors. 
(1) (2)

1 2( ) , 0rt rtx t c e c e r     

 (1) (2)

1 2

rte c c  
 

The critical point is called a proper node or star point. 



B) There is only one eigenvector  . 

Recall from before 1 2 2( ) rt rt rtx t c e c te c e       

where   is the generalized eigenvector. 

Suppose 0r  , then as t  , no matter what  

1c  and 
2c  are, the solution will go to zero. 

 1 2 2( ) rtx t e c c t c      

We can see as t  large, 
2c t  is the dominant term compared with 

1 2c c  . 

∴ as t  goes to  , the solution will go to zero in the direction of  . 

For 
1 2 0r r  , it is similar to draw the picture. 

We just need to reverse the direction in t  variable. 

In the presence of one independence eigenvector, the critical point 0  is called  

an improper or degenerate node. 



Case 4： Complex eigenvalues 

In this case, suppose the eigenvalues are i   and i  ,  

and the corresponding eigenvectors are   and       

∴ One solution can be written as  
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∴ All solutions can be generated by  

( )x t
1 1Re cos Im sint tc e t c e t      2 2Im cos Re sint tc e t c e t       

        1 2Re Im costc c e t     2 1Re Im sintc c e t     
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 
  
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From the expression, we only know the solution will go to zero if <0 . 

But it is difficult to analyze how it goes to zero in details. 



 

or 

  

We consider a special case： 

1

2

x
x x

x

 

 

  
    
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We see the eigenvalues of the matrix are i  . 

1 1 2

2 1 2

x x x

x x x

 

 

 

  
   
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1 1

2 2
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x x x x
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

 
   

 
 

If 0  , we know the solution will go to zero as t  . 

But the direction is unknown. 

A quick way to know about this is to go back to the ODE 1 1 2x x x    



If 0  , then for the points on the positive 
2x axis  

1 0x  . 

                   

 

 

∴ the point is moving clockwise. 

∴ It belongs to the first category. 

∴ For 0  , the critical point is a spiral sink； 

0  , it becomes a spiral source. 



． Now we will introduce a useful method to determine  

the behavior near the critical point. 

． It makes our life easier if we see the Polar coordinates. 

Why？ 

． If we know the sign of r , then we know whether the point  

goes to zero as   since r  denotes the distance to the  

critical point zero. 

． The sign of   gives us information on the direction of  

the trajectory. 



Q： How to use the Polar coordinates？ 

 

We need to derive equations for r  and  . 

2 2 2

1 2r x x  , we already did this before and got 
dr

r r
dt

  . 

To get an equation for  , we notice that 1 2

1

tan
x

x
  . 

2 2 1 2
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        2

2

1
r

r
        



∴ If 0  , then   is decreasing,  

that means the solution goes clockwise.    

∴ From the equation of r , we know that if 0  ,  

r  is increasing with t , so it is a spiral source. 

If 0  , the critical point is a spiral sink. 

 

What happens if 0  ？ 



Case 5： Pure imaginary eigenvalues 

In this case, we have two eigenvalues i . 

From the equations in Polar coordinates. 

0r      

r  constant , 
0t      

We know the trajectories are concentric circles. 

As before, the sign of   determines the direction of the trajectory. 

This kind of critical point is called the center. 

It is stable, but not asymptotically stable. 



To summarize： 

Let 
1r  and 

2r  be the eigenvalues of  . 

Eigenvalues Type of Critical Point Stability 

021  rr  Node Unstable 

021  rr  Node Asymptotically Stable 

12 0 rr   Saddle Point Unstable 

021  rr  Proper or Improper Node Unstable 

021  rr  Proper or Improper Node Asymptotically Stable 

 irr 21,  Spiral Point  

    0   Unstable 

    0   Asymptotically Stable 

 irir  21 ,  Center Stable 

 



9.2  Autonomous systems and stability 

We are concerned with systems of two simultaneous differential equations of  

the form 

( , )

( , )

dx
F x y

dt

dy
G x y

dt





 


   where F  & G  are continuous and have  

continuous partial derivatives in some domain D of the xy - plane. 

We observe that the functions F  & G  do not depend on the independent  

variable t , but only on the dependent variable x  & y . 

Such system is called autonomous systems occur frequently in applications,  

and the analysis in 9.1 can be applied here. 

• simple autonomous system： : 2 2x x     



Ex：                   

Consider an oscillating pendulum, by the conservation of  

angular momentum, the equation of the movement is written as  

sin 0
c g

mL L
       or  2 sin 0r      . 

To transform this second order equation into first order linear system,  

we let ,x y   , then the system becomes  

2 sin

x y

y ry x 




   
     ∴ 

2

0 1 0

0 sin

x x

y r y x

      
       

      
 

This is a nonlinear system. 



We can find the fixed point by setting  

2

0

sin 0

y

ry x



  

   
0

x n

y

   
 


 

Can we determine the stability of these fixed points from intuition？ 

          
unstable                     A.S. 

These points correspond to two physical equilibrium positions,  

one with 0  , the other one with   . 



． Our intuition suggests that the first is stable and the second is unstable. 

． If we don't consider the damping force ( c  or r  is zero) and if the mass  

in displaced slightly from its lower equilibrium position, then it will  

oscillate indefinitely with constant amplitude about the equilibrium position. 

． This type of motion is stable, but not asymptotically stable. 

                        (without air resistance) 



Ex 1： 
x y

y x





  

x

y




        ( 0 , 0 ) is the only critical point. 

0xx yy                  

2 21 1
0

2 2

d
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dt

 
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 
           

2 2x y c    



Ex 2：
2

4 2

12 3

x y

y x

 


 
        critical points： ( 2,2) , (2,2)  

2

4 2

12 3

dx y

dy x





                        

   212 3 4 2x dx y dy     

3 212 4x x c y y      

∴ 2 34 12y y x x c     



 If a mass is slightly displaced from a lower equilibrium position, it 
will oscillate with decreasing amplitude, and slowly approach an 
equilibrium position as the damping force dissipates initial energy.  
This type of motion illustrates asymptotic stability. 

 If a mass is slightly displaced from an upper equilibrium position, it 
will rapidly fall, and then approach a lower equilibrium position. 
This type of motion illustrates instability 

 See figures (a) and (b) 
 

Stability of Critical Points: Damped Case 



We can draw direction fields in the neighborhoods of these 
critical points to get a sense of the nature of these points. 

Example 1: Critical Points of a Nonlinear System (2 of 2) 

Look at the points (0, 0) and (0, 1) Look at the points (-2, -2) and (3, -2) 
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( )(1 )x x y x y     (2 )y x y  Four critical points： (0,0) , (0,1)  , ( 2, 2) , (3, 2)    

saddle 
A.S. U.S. 



 See how the plot of trajectory solutions for the system  

     in Example 1 fits in with the direction field plotted.  

 You should notice there appears to be a saddle point  

     at (0, 0) and an unstable equilibrium at (3, -2).  

 The basin of attraction for the spiral node at (0,1) can  

     be viewed and the rest of the plane is the basin of  

     attraction for the asymptotically stable node at (-2,2).  

 There are two separatrices both passing through the origin.  

 Refer to Figure 9.2.6 in the text. 

 

Example 2: Addition of Phase Portrait  

4 2 2 4 6
x t

6

4

2

2

4

y t

)2(/),1)((/ yxdtdyyxyxdtdx 



 Consider the system   

 It follows that     

 The solution of this separable equation is    

 Thus the trajectories are hyperbolas, as shown below. 

 The direction of motion can by inferred 

 from the signs of dx/dt and dy/dt in the 

 four quadrants. 
 

Example 3 

xdtdyydtdx  /,/

dxxydyyxdxdy  //

cxyyxH  22),(



 We have    

 A graph of some level curves of H are given below.  

 Note that (-2, 2) is a center and (2, 2) is a saddle point.  

 Also, one trajectory leaves the saddle point (at t = -), loops 
around the center, and returns to the saddle point (at t = ).  

 

Example 4: Phase Portrait  (2 of 2) 

cxxyyyxH  32 124),(


