Chapter 9

Nonlinear differential equations
and stability
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0.1 The phase plane : Linear system

Many differential equations can not be solved analytically.
How can we get some qualitative information of the solution
without solving the equation itself ?

First we introduce the concepts of critical points and stability.

Def ©  Autonomous system X = f(X)
non-autonomous system X = f(x,t)



Def : The points where f(x) =0 are called critical points
(equilibrium solutions) of the autonomous system.

Def -
1) A critical point X, 1s said to be stable if Ve >0, 30>0 >

every solution X =@(t) satisfying ‘qp(O) — XOH <0 exists for
all t>0 and o) —x|<e Vt=0
2) A critical point that 1s not stable 1s said to be unstable.
3) A critical point X, 1s said to be asymptotically stable if it 1S s
and lime(t) = x°

t—o0



In this section, we deal with the stability 1ssue of the 2x2 linear system.
Consider X=AX where A 1sa 2x2 matrix and nonsingular.
Then the only critical point (equilibrium solution) 1s X=0.

Xij =¢(t) of X=AX can be considered as

A vector solution X = (
2

parametric representation for a curve in the (X, X,) plane.
This curve 1s regarded as the path, or trajectory of a moving particle whos

.dx . . . . .
velocity s 1s specified by the differential equation.

The (X, X,) plane is called the phase plane and a representative se
trajectories 1s referred to a phase portrait.



. . O 1 A .
Ex: X= X phase portrait

7
X, = X, X, =c¢csint ¢ co \\

- = X =X, =X = B . _
X, ==X, X, = CCOSE G SI

} phase p

X, c,sint+c,cost) _
X = =¢(t) = _ 18 a solution of the ODE.
) c,cost—c,sint

What is the curve described by the parametric representation 7
X’ +X,°=¢c°+¢c,°=c, .". the trajectory is a circle for different val



Now we will discuss these 1ssues 1n details according to the signs of the eigenvalues

Case 1 © Real unequal eigenvalues of the some sign.
Let the solution of X=Ax be x(t)=c,Ve™ +¢,&Pe™

where I, and r, areeigenvalues of A.

Suppose I, I, are both negative.
Regardless of the values of ¢, and ¢,, all solutions
tend to zero as t— oo

.". The critical point 0 is asymptotically stable.
- If we look into the details of the solutions, suppose I, <r, <0,

". the solution can be written as
X(t) = Clg(l)erlt n C2§(2)er2t X(t) _ le(l)erlt n ng(z)erzt




From the expression, we can see that as t — oo, the first

term ¢, Ve i negligible compared to ¢,&%.

". as time 1s big, all the solutions tend to zero 1n the
direction of & @ I, 1s the dominant eigenvalue. N

This type of critical point 1s called a node or nodal sink.

- If r, and r, are both positive and O0<r, <1, then the solution
has the same pattern.
The only difference 1s that the direction 1s just the opposite.
In this case, the critical point 1s called a nodal source.

X(t) — eth (le(l)e(rl_rZ)t + ng(z) )



Case 2 + Real eigenvalues of opposite sign
x(t) =cYe™ +¢,£%e? where >0 and 1, <0.

£ &()

;—\

The critical point 1s called a saddle point.




Case 3 © Equal eigenvalues
Now I =r,=r.

We may suppose r <0,
For the other case, we only need to reverse £@

the direction on the trajectory.

A) There are two independent eigenvectors.
x(t) =c, Ve +¢,%e | r<0

=e" (& +c, )

The critical point 1s called a proper node or star poi




B) There 1s only one eigenvector ¢&.

Recall from before x(t) =c,e" +c,éte™ +c,ne”
where 7 1s the generalized eigenvector.

R
% e
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Suppose I <0, then as t — oo, no matter what
c, and C, are, the solution will go to zero.

x(t) =e" (c.&+C,ét+c,n)
We can see as t large, C,&t 1s the dominant term compared with ¢, +C,p

.as t goesto oo, the solution will go to zero in the direction of &.
For r, =r, >0, 1t 1s similar to draw the picture.
We just need to reverse the direction in t variable.
In the presence of one independence eigenvector, the critical point O
an 1mproper or degenerate node.



Case 4 © Complex eigenvalues
In this case, suppose the eigenvalues are A+1u and A—lu,

and the corresponding eigenvectors are & and n = n=~¢&
.". One solution can be written as

X(t) = ge" ™ = e” (fl(cosﬂt”_s’i_n ”t)j X(t) = e’ (é(c 0pt—i s
&, (cos pt +isin ut) &, (cos pt —isin ut)

%= ot 2Reé cos ut—21Im¢ sin ut
= X+X= _
2Re &, cos ut—2Imé, sin ut

%ot 21Im &, cos pt + 21 Re & sin ut
| 2iIm&, cos ut + 2i Re &, sin ut



.". All solutions can be generated by
X(t) = c, Re&e™ cos ut —c, Im&e™ sin ut +c, Im &e™ cos ut + ¢, Reée™

=(c,Re&+c, Imé&)e™ cos ut +(c, Re& —c, Im&)e™ sin ut

(xi(t)

X(t)

- (c,Reé +c,Imé )e™ cos ut +(c, Re& —c, Im¢&, )e™ sin ut
— (C1 Refz +C, Im gz)eﬁt COS,th +(C2 Re§2 —C, Im cfz)eM sin ,th

From the expression, we only know the solution will go to zero if A<0.
But 1t 1s difficult to analyze how it goes to zero in details.



We consider a special case -

ol

We see the eigenvalues of the matrix are A £,

=Ky kK= AKXy
X, = — 11X, + AX, X,X, = — X X, + AX,°

ccllt( X, +1x j /I(x12+x22)

If 4<0, we know the solution will go to zeroas t — .

But the direction 1s unknown.
A quick way to know about this 1s to go back to the ODE X =4



If x>0, then for the points on the positive X, —axis

¥a.

". the point 1s moving clockwise.
.. It belongs to the first category.
.. For A <0, the critical point 1s a spiral sink

A >0, 1t becomes a spiral source.



Now we will introduce a useful method to determine
the behavior near the critical point.
It makes our life easier 1f we see the Polar coordinates.

Why ?

[f we know the sign of I, then we know whether the point
ooes to zero as oo since I denotes the distance to the
critical point zero.

The sign of 6 o1ves us information on the direction of
the trajectory.



Q * How to use the Polar coordinates 7

We need to derive equations for r and 6.

dr

r’ =x°+x,°, we already did this before and got I = e Ar .
To get an equation for @, we notice that € =tan™ % .
diX ) % %X
_d_Q_i tan‘lﬁ _ dt\ x X X_Lz XX, = XX,
dt dt X, ) X, X,> + X,
1+| =2 1+
X, X

DX (0 25) = (A%, 40x,)%, ] = e ] =



. If w>0,then 0 is decreasing, ‘(%
that means the solution goes clockwise.

.. From the equation of r, we know thatif 4 >0,
r 1sincreasing with t, so it is a spiral source.

[f A<0, the critical point 1s a spiral sink.

What happens if 4 =0 ?



Case 5 ' Pure imaginary eigenvalues
In this case, we have two eigenvalues iz .

From the equations 1in Polar coordinates.
r=0 0=—pu
— I =constant, 0=—ut+06,

We know the trajectories are concentric circles.
As before, the sign of u determines the direction of the trajec
This kind of critical point 1s called the center. |
[t 1s stable, but not asymptotically stable.



To summarize -

Let r, and I, be the eigenvalues of A.

Eigenvalues Type of Critical Point Stability
n>r,>0 Node Unstable
rL<r,<0 Node Asymptotically Stable
r,<0<r Saddle Point Unstable
rL=r,>0 Proper or Improper Node | Unstable
rL=r,<0 Proper or Improper Node | Asymptotically Stable
n.n,=Atiu Spiral Point

A>0 Unstable

A<0 Asymptotically Stable

n=Ilu, r,=—lu

Center

Stable
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0.2 Autonomous systems and stability

We are concerned with systems of two simultaneous differential equations of

[ dx
gt F(X,y)
the form < where F & G are continuous and have
dy
at =G(x,Y)

continuous partial derivatives in some domain D of the Xy - plane.
We observe that the functions F & G do not depend on the independent
variable t, but only on the dependent variable X & V.
Such system 1s called autonomous systems occur frequently 1n applications,
and the analysis 1n 9.1 can be applied here.

simple autonomous system - X = AX A:2x2



Ex :
Consider an oscillating pendulum, by the conservation of
angular momentum, the equation of the movement 1s written as

- e W e e W e

é+%é+gsin9:0 or O+rf+w’sind=0
m

To transform this second order equation into first order linear system,
welet Xx=60 , y= 2 , then the system becomes

bosemy-wrsme (5o JoHorans

This 1s a nonlinear system.



We can find the fixed point by setting

y=0 X=xnz — 6
2 a3 —
—ry—w°sinx=0 y=0

Can we determine the stability of these fixed points from intuition ?

_?7 jg

unstable

These points correspond to two physical equlhbrlum positions,
one with € =0, the other one with 6 =r.



Our 1ntuition suggests that the first 1s stable and the second 1s unstable.
[f we don't consider the damping force (C or r 1s zero) and if the mas
in displaced slightly from 1ts lower equilibrium position, then 1t will
oscillate indefinitely with constant amplitude about the equilibrium po
This type of motion 1s stable, but not asymptotically stable.







. 2.<(X:4—2y
P4 ly=12-3x
dx 4-2y
dy 12-3x°

= (12—3x2)dx:(4—2y)dy

— 12x-x’+c=4y—Vy’
Ay -yt 12X+ X =C

critical points -

(_21 2) y
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Stability of Critical Points: Damped Case

» If a mass 1s slightly displaced from a lower equilibrium position, it
will oscillate with decreasing amplitude, and slowly approach an
equilibrium position as the damping force dissipates initial energy.
This type of motion 1llustrates asymptotic stability.

» If a mass 1s slightly displaced from an upper equilibrium position, 1
will rapidly fall, and then approach a lower equilibrium position.
This type of motion illustrates instability ~

N
» See figures (a) and (b)

/




\

Example 1: Critical Points of a Nonlinear System (2 of

X=—(Xx—y)Al-x-y) Y=x(2+Y) Four critical points : (0,0) , (0,) , (-2,=2) , (3,

» We can draw direction fields in the neighborhoods of thes
critical points to get a sense of the nature of these points.

Look at the points (0, 0) and (O 1) Look at the points (-2, -2) and (3, -2)
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Example 2: Addition of Phase Portrait

» See how the plot of trajectory solutions for the system
in Example 1 fits in with the direction field plotted.

» You should notice there appears to be a saddle point
at (0, 0) and an unstable equilibrium at (3, -2).

» The basin of attraction for the spiral node at (0,1) can
be viewed and the rest of the plane 1s the basin of

attraction for the asymptotically stable node at (-2,2).
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» There are two separatrices both passing through the origin.

» Refer to Figure 9.2.6 1n the text. dx/dt=—(x—y)L=x-y




Example 3

» Consider the system dx/dt=vy, dy/dt=x
» [t follows that  dy/dx=x/y < vydy=xdx

» The solution of this separable equationis H(X,y)=y*—x*=c¢

» Thus the trajectories are hyperbolas, as shown below.

» The direction of motion can by inferred

from the signs of dx/df and dy/df in the \\
four quadrants. / L AN
//%;




Example 4: Phase Portrait (2 of 2)

» We have H(x,y)=4y—y°—12x+x> =cC
» A araph of some level curves of A are given below.
» Note that (-2, 2) 1s a center and (2, 2) 1s a saddle point.

» Also, one trajectory leaves the saddle point (at = -), loops
around the center, and returns to the saddle point (at 7= o).

e




