® CHAPTER 3

PARAMETRIC POINT ESTIMATION



Let X ,...,.X be arandom sample from a density f ( ; 6’),
where the form of f is known and the parameter @ is
unknown. Assume that 6 =(4,,...,6, ). Our goal in this

section Is to find statistics to estimate some functions,
say, 7,(0),....z.(0) of 0=(8,....6,).

k

Def 3.1 : Any statistic whose values are used to

estimate some function of 4, say 7(6’), IS defined

to be an estimator of 7(6’).



« Note that an estimator I1s a statistic which is both a

random variable and a function.
. Let T = /(Xl,...,Xn) be an estimator of 2'((9).
A value of the function t = /(a,,...,z, ) is always

101

called an estimate of 7(9).

EX 3.1: Estimators : X,S? ; Estimates : T, s’

o) )

. The notation 6 = (01,...,6’k) IS used to denote the

estimate of 6 = («91,...,6’k), where é; estimate &,

j=1...k.©=39(X,,...,X,) is the corresponding

estimator.



Let X be a random variable with density f(- ; 6,...,6, ). Recall
that x_is the rth moment about 0; i.e., iz = E(X) Usually,

u isafunctionof ,...,0; i.e, u = y'r(ﬁl,...,ﬁk). Letz,,...,z.
be the observations of a random sample X ,..., X from

f(-:6.....6,), and let m :%lexj denote the jth sample

moment of z,,...,z . Set
m'1 =,u'1(¢91,...,9k),
m'2 =,u'2(¢91,...,(9k),

m'k :,u'k(é’l,...,é’k).



Let élék be the solution of the k equations. Then the

A

estimator(@l,...,@k) IS called the method-of-moment
estimator(MME) of (6,,...,6, ).

EX3.2: X,,....X ~ iid N(y ; 02)

Recall that ,u'1 = U= E(X), o’ = E(XZ)—,u2

— ,u'2 = E(Xz) =0° + 1’

Set{ '+ FTH
m

/Ll:X (ﬁ:)?
= n g n n
02+ﬂ2:£ZX22 AZZEZXZ_XZ_EZ(X_X)Z
n ;-1 n ;-1 (e



EX3.3: X,,...,X, ~ iid Exp(0)

f(x ; (9)2%6;,03£E<OO.

Setm, =4, = X =6, So = X is an MME of 6.

Note that if we set m, = u, (EZXZ.Z = 2(92]
n

1=1

=6 = \/ZLZXZ.Z We notice that the MMEs are not
n ;-

uniquely defined.



Def 3.2 : The likelihood function of n random variables
X,,...,X is defined by L(&’ ; xlxn) = fi & (:1; T 6’),

17

which is considered to be a function of 6. Particularly, if

X,,...,X Is arandom sample from a density f(:z; ; 6’), then

L(&’;l,...,xn)z f(x «9) ( ) Hf(x 6’)

Def 3.3 : Let L(H) — L(é’ .. ) be the likelihood function
)) s the

for the random variables X,,..., X . If H( 9(

1[

1[

value of @ in Q which maximizes L(é’), then ®:9(X Xn)

Is called the maximum likelihood estimator(MLE) of 6.



- Let X ,...,X be arandom sample from a density f (az; 6’).
Assume that 8 = («9 ...,0 ) If the likelihood function L(H)

=L(0,....0,) = Hf( 3 0,...,0,) is differentiable (in 6),

then possible maximum likelihood estimate of (91,...,6’ ) IS

k
oL(6,...,0,) 01
= ,i=1..,k

7

the solution of the k equations

Note that L (&) and logL(#) have their maxima at the same

value of @ (since the log function is strictly increasing on
(0,00)),it is sometimes easier to find the solution of the

dlogL(d,,...,0

equations k) =0, i=1...k
00




EX3.4:X,..X ~ iid N(y,az), where ¢ and o*

are unknown and @ = (y,o”).
1

— 1 =Dy
Then L{ u, o H 20 - e’ =
( ) \FG (27202)4
LOQL(,L!,GZ):—|0927T-—|OQG ——Z(X — uY
2 207
", 1 &
—logL{u,0°)=—=> (X —u)=0
Se“ag 9 (ﬂa) 02;( ; ﬂ)n
logL( 6% ) = —— X — u)y
~ =109 (0% > 4;( 1)




Weget 1= X and 6° = 1Z(XZ. ~- X
n
Since ) (X, — u)* >» (X, — X)* for u# X, for any value of o°.
1=1 =1

1 3 -xy 1 3wy
6262 i1 > e i
(2%02 )A (272'62 )A

Thus, the likelihood function achieves its global max. at ( h 62).

So X and iZ(XZ. — X)* are the MLEs.
e



EX35: X,,...,X ~ iid U(Q—%,t%—%),&’eﬂ%{

1 me_9—£,6’+1_
flz; 0)= 27 2|=1

B - {6’—1,64}}
0, o.w 2 ¢

Then £(6) = [ [/(z:6) - e () 1t ()

. — Y +—
Z—l yn 2 yn 2

(7)

So any statistic with value 0 saytisfying

yn—%ﬁéﬁler% s a MLE.



EX3.6: X,,...,. X, ~iid U(0,0), 0< 6 < .
1
f(x ; 6’) =5[[0,9}(x)
1

n 1
Then L(6) = ];[5 Loy ()= EI[%] 0).

Note that Z(6) is a decreasing function of 6.

Since 0> y,. L(6) is maximized at D=1y .
Thus, Y Is the unique MLE of 6.



EX3.7: X,...,X, ~iid Cauchy(6,1), 0 R
1

7{1+($—6’)2}
L(6) =] [— 2} HeR =ﬂ"1@j[l+(xi—9)2}

=1 77[1+ (xz — (9)

e

—
N
&

|l

IogL(é’) = —nlogz — ii]og[“ (x — 9)2}

d & 1
Set —logL(#8) =0, we get
do ( ) @Zl:[lJr(xZ.—@)z}

There are (2n—1) solutions for 6, which are not easy to solve!

-2(z,-6)=0

Numercial methods are necessary!



EX3.8: X,,..., X, ~iid N(6,1), ~0<f <o

1 Ko
e
nL(6)=in(2z) " -3 (s - )

1=1

Then L(@) — ﬁ% 6_%(%_9)2 _
=1 7T

d . -
Set d—@lnL(@) =>(z,-0)=0=6=X.

To verify that X is a global max. of the likelihood function,

recall that Zn:(a: ~a) >i(az ~z) for any number a # 7.
1=1 =1



3o B3]
This implies that ¢ = <e %“ forany @ # .

15

- (272)_% e{z(m) 22 } If X <0, then L(&’) is a

decreasing function for € >0, and is maximized at 8 = 0.

2

Hence X is the MLE. If 8> 0, then L( )

Hence the MLE of @ Is (:) =4




Thm 3.1: (Invariance property of MLE)
If @ = .§(X1,...,Xn) is the MLE of 6, then for any function 2'()

the MLE of 7(6) is r(@)).

Remark 3.1 : The invariance property of MLE also holds in the
multivariate case. That is, if the MLE of (6’1¢9k) is (@1,...,@k),

then the MLE of any function r(@l,...,é’k) is r(@)l,...,@)k).

EX3.9: X,,..., X, ~ iid N(u,0°)

Let 7(6’) =u+7o, where Z, IS given by CD(Zq) = q.

The MLE of 7(9) is X + Zq\/izn:(xi - X)°.
n o



Thm3.2:Let X ,...,X bearandom sample from a
density f(;6). If a sufficient statistic T = /(X,,..., X, )

for @ exists and if a MLE © of 6 also exists uniquely,
then @ is a function of 7' = /(Xl,. . Xn)

Remark 3.2 : If the MLE ® in Thm3.2 is also sufficient,
then by definition, it must be a minimal sufficient statistic.

EX3.10 : The MLE® =Y of #in U(0,6) is a minimal
sufficient statistic for 6.




\
EX3.11: X ,....X ~ ud U(@—%,9+1 . In EX3.5,

2,
we have shown that any statistic with value 6 satisfying
Yy —% <0< Y, +% IS a MLE .It is easy to show that

A

® :[Yn —%]H:oszx(l/l -Y +1) is a MLE of 6, but ®

Is not a function of Y, and Y . Also note that the MLE

Y +Y | . - -
——" s a function of the sufficient statistics Y, and Y ,

however, It IS not sufficient.



In this section, we will introduce some basic criteria,
whichan estimator may or may not possess, that will
help us Iin evaluating estimators.

Def 3.4 : Let T =/(X,,...,X, ) be an estimator of
r(6). The maen squared error (MSE) of T, denoted
by MSE (6), is defined to be

MSE (6) = E, [(T - r(e)ﬂ.




Remark 3.3 :
(i) If f(2;0) is the pdf from which the sample was

selected, then E, [(T - T(Q)ﬂ

= [ f[# ) = 2(0) [ T1 (5:6) o,

(i) Since MSE is a function of 4, there will not be one "best"
estimator. Often, the MSEs of two estimators will cross
each other.

Def 3.5 : An estimator T = /(Xl,...,Xn) is defined to be an
unbiased estimator of r(@) if EQ(T) = 7(6’), for all 8 e Q.




Remark 3.4 : MSE incorporates two components, one
measuring the variability of the estimator (precision) and
the other measuring its bias (accuracy). More precisely,

MSE () =Var(T) + [E (T)- T(H):r =Var(T)+°(6),

0

where b (0) = E,(T) - () is the bias of the estimator T.

0

If T is an unbiased estimator, then MSE (6) = Var(T).




EX3.12: X,,..., X, ~ N(4,0). Recall that the MLEs of

u and o*are X and 1Z(XZ. — X)?, respectively.
n s

E(X ) = 4. .. X is an unbiased estimator of ..

MSEy (u) = E[(X_”)ZJ =Var(X) = 6—2. Since EQ(SZ) o,

n
1 _ 1 1 _ n—1
El-3Y(X -XV|=E|=n-1.->M(X -X)P|=EFE | —=8°
R EER R R
A i

n n



So the MLE of &* is not unbiased

0

MSE (0'2):E { izn:(Xi XY -o? |
o _,n = |

= Var(%znl(Xi —)_()Zj +{E€ [%ZHZ(XZ —)_()2j _0-2}

2 4
= Var(n_152]+£—n_102 —sz = (_n—l] Var(52)+a—2
n n n n

_(n—1)2 20" 04_(271—1)04
o .n—l+n2_ n .




Def 3.2 : Let ¢ denote an estimate of 1(9). The loss function,

denoted by /~ (£:0), is defined to be a real-valued function
satisfying, (i) / (t; 9) > 0 for all possible estimates ¢ and all
6 e, and (i) / (:6) =0 for t = (6).

EX 3.13 : Some possible loss-functions:

(i) /f(t; 0) = :t — 7(6’):2 — square error
(ii)/i(t; 0) = :t — 7(9)_ — absolute error

A if ‘t:r(é’)‘ > ¢

0, if ‘t —r(e)\ < (A>0)

(i) /; (£:6) =+

(iv)/, (1:6) = p(0)|t-7(6)| .p(6)=0and r >0.



- Note that the loss function depends on the estimate
t = /(xlxn) and hence the samples X ,..., X .

Thus, we hope to select an estimator that makes the
loss small. However, it is impossible to make the loss

small for every possible sample. So we may try to pick
an estimator that makes the average loss small.

Def 3.2 : Give a loss function /( ;+). The risk function,
denoted by R (t:6), of an estimator 7' = /(X,,..., X, )is

defined by R (0) = E [/(T@)J

%




Remark 3.5 : Suppose X,,...,X Is arandom sample from a

continuous distribution having pdf f(;6). Then
B,/ (1:0)|=E,| /(7 (X, X,):0)
=_[---j/(/(Xl,...,Xn),‘@)ljf(xi;é’)dxl--- dz .

If we know the density of 7', then E, [/(T; 0)} = j/(t; Q)fT (t)dt.

EX3.14 : The corresponding risks in EX3.13 are :

: \2
(i) E, [(T -7(0) } — mean-squared loss

(i) E, HT — 7(6’)‘: — mean-absolute loss
(iii) A : p(e)HT ~7(0) > gJ

(iv)p(6): E, UT _ T(H)H



Def 3.8 : Let T, = /(X,,....X,) and T, = 4(X,,..., X, ) be two
estimators of 6. Then, T, is defined to be a better estimator than
T,iff R (§)<R (0) forall cQand R (6) < R (6) for at

least one 9 € Q. An estimator T = /(Xl,...,Xn) is defined to be
admissible if there is no better estimator.

Def39: 7T =/~ (Xl,...,Xn) is said to be a minimax estimator iff

SUPR. (0) <supR (0), for every estimator 7= /(X,,..., X, ).
o6 6




EX3.15: X,,...X, ~U(0,6),0>0.

Y,...,Y : order statistics correspondingto X ,..., X .

letT=v, ="y, 7-viv, T = (n+1)Y,, T, =2X be

n
estimators of 6. We assume that n > 2, R (6?) = MSE (6’)

(1) ~T,=Y <46, ..1 is unbiased.

n-1
The p.d.f of T} is fﬂ(y)‘"(éj VR ,0<y<é.

6

=——0#0.
n+1

. The bias of 7, is b, (6) = E(T;) - e_n—jlk 0.

A
0

ny" ™ dy = n

92.
% n+2

Now (1) = [



Var(T) = B(12) [ B(T\T =gt (6] ____n€’
(1) (1) [ (1)] n+26 ("J“lj (n+1)2(n+2)
"R, (0) = MSE, (0) = Var(T;) + (6) = » +1;Lf(2n v = (n_—+11‘9

20
(n+1)(n + 2)°




n+1

271, =""y

n

E(Tz):E(nJrl j

n+l n
EY) n+16=9.

. T, is unbiased and hence b, (¢) = 0. Thus, R, (9) = Var(T)

T

:W[nglnj (=2 vt~ <n+1§8(2n+2>

o R, (9)_ n(n+2) - n+l
n(n+2). RTl(Q)_ 207 == <1, n=z=2.

(n +1)(n + 2)

"~ R, (0)< R, (6) V6>0.= T, is better than T,.

= T, is not admissible. Also note that R, (6’) ~ %RTl (6’)

n

when n is large.



) T,=Y+Y

E(T,)=E(Y,+Y,)=E(Y,)+E(Y,) = —— =0

= T, is unbiased and b, (6) = 0.

It's easy to show that Var(Y,)=Var(Y,) = ( 7;29(2 |
n+1l)(n+2

So RT3(H) Va,r( ) T(Y +Y)
= Var(Yl) + Var(Yn) + 2COV(Y1,Yn) 2Va7°(Y1) + ZCOV(Yl,Yn )
Note that the joint pdf of Y, and Y s

1 .
fev (9009,) = n(z )(y —y,) 0y <y, <.



Socov(Y, Y, )=E(YY,)-E(Y,)E(Y,)

1

0 (6 Y no ) 0’
n+2 (n+1){n+1 _(n+1)2(n+2).

ng? 20°

) ) e (ne?)

20°

(n +1)(n + 2)

o T IS Inadmissible.

=R, (0)> R, (6).n>2.



(4) T, = (n+1)Y,
B(T,) = (n+1)E(Y;) = (n+1)—— = 0 = T, is unbaised
RT4 (6’) = Var(T4) = Va'r((n +1)Y1) = (n +1)2 Vam(Yl)

2 n6* n* .R
:(n+1) > = LS. —
(n+1) (n+2) n+2 i,

=n’>1,n>2.= T, is inadmissible.
Note that n* grows very fast when n is large.
So T, Is not a good estimator.



(5) T, :2)_(:>E(TS):2E()_()=2-§:9:>T is unbaised.

9292

n

e

(9) = Var(Ts) = Var(ZX) 4Va,7°

5

n+2

02 >1, n=2="1 isinadmissible.

n(n+2)

Summary : R, (6)< R, (6)=R, (0)< R, (6)< R, (6), n>2.

Finally, if n =1, then Y =Y =X =X

1°

SoT,=X, T,=T,=T,=T,=2X.S0 R, (0)=- =R, (0)=—.

T, ="ty o [1+£an-

2
n n



Def 3.10 : Let X ,...,X be arandom sample from a density f (:r;; 6?).
An estimator 7" = /" (Xl,...,Xn)of 7(9) is defined to be a uniformly

minimum-variance unbiased estimator (UMVUE) of z(8) iff (i) 7" is
unbiased:; i.e., EQ(T*) =7(6), and (i) Varg(T*) <Var,(T) for any
other unbiased estimator T = /(X,,..., X, )of (6).

- Consider a random sample X ,..., X from a pdf f (:1;; 6?), 0 e Q.
Assume that Q is a subset of real line. Let T'= /(X,,..., X, ) be an

unbiased estimator of 7(0). We assume that



() f (x; 6’) IS positive on a set S independent of &,

.. O _ . .
(i) %Iogf (:v 6’) exists for all z and all &

(i) the integral _[ e j ﬁ f (a:@.;e) dr,---dz can be differentiated with
respect to & undgr1 the integral sign;

(iv) the integral jj/(xlxn)ﬁf(xﬁ)dxldxn can be
differentiated with respect to :61? under the integral sign;

V)0<E, [(%Iogf(X; «9)] ] < oo forall e

The above assumptions are called regularity conditions.



Thm 3.3 : (Cramer-Rao inequality)

Under the regularity conditions, if T = /(Xl,. ..,X ) Is an unbiased

estimator of z(6), then we have Var, (T)> , where I(6) =

2
E, (((%Iogf (X; H)j } for all @ e Q. Equality in Equation (3.4) holds

iff there exists a function, say k(&;n), such that Za—(’fglog f(z:0)
1=1

= k(@;n)[/(xl,...,xn) —7(6’)].

Remark 3.6 : The regularity conditions can be modified for discrete
density functions, leaving the results of Theorem 3.3 unchanged:




« Theorem 3.3 states that If an unbiased estimator whose variance
coincides with the Cramer-Rao lower bound (CRLB), then this
estimator is an UMVUE.

« The quantity (9) Is called information number or Fisher information

2
of the sample. In continuous case, I(6) = E (%Iogf(X; 9))

0

= | ((%Iogf(az;ﬁ)jz f(2;0)dx.

The information number gives a bound on the variance of the best

unbiased estimator of z(6). As the information number gets larger,

we have a smaller bound on the variance of the best unbiased
estimator of r(@).



Lemma3.1: If f(z;0) satisfies the condition

d
dé

E

0

=y {a—%logf(X;ﬁ)J = | 0

(%log f(X: e)jz

-k

0

[  ogf e)j (o e):

00|\ 0

2

5 _
ﬁlogf(X;H)_.

dz, then



EX3.16 : X,

,,,,,

Let () = HThenr() 1

0

- —Ilo 6’
Py gf:v

=F

0

(%Iog f(X; 9)]2

—| g(e

-

So the CRLB for the variance of an unbiased

("0
%
v

estimator T of 0 is Var, ( / , = Similarly, if r(6) =
9_
_1

then r'(@) =— and Var

N

9




Note that i%logf(xi 0) = Z(% B xj "0 Zx - _n(x _%j

1=1

1
_ 1 i
We see that X is an UMVUE of = Note Var(X) g

= % coincides with the CRLB.
n

e Qe

x!

,z =20,1,...

EX3.17 : X,,..., X ~ f(2:0)=f(2:4) =

0 0 AT
glogf(x;/l): —Ioge_x! (’M(

= -1+ = I(2)=5, (%'ng(X?H)T

A + zlogd - logz!)




Take z'(ﬂ.) —et = P(X - O). Then the CRLB for the variance

2
2
—€
of an unbiased estimator T of ¢™* is Var(T) 2( /l
n « —
A

/16—21

.Note that T = Z[ ( ) is an unbiased estimator
n

of e* SlnceE( ) ( Z[ ( )]:%iznl:E([{o}(xi))
:%i[l'[)(% :O)JFO'P(% ¢0)]:%ie‘ﬁ =e*. T is the

proportion of observations in the sample that are equal to O.



Now, Var(T) = Var(l y
n

:i i (6_’1 —6_21)2%6_/1 (l e )and %e (1_6—1)2 /16””

— T may not be an UMVUE!! Note that Za%logf(:ci;/i)
1=1

— (—1+—i)=—n+ i — (X—ﬂ)..'.)?isanUI\/IVUEof/i.
1=1

EX3.18 : X,,...,.X ~U(0,0).f(z:0)= %,o <z < o,

. 0 0 1 0 —
Since Elogf(x;e)—ﬁlog( ] a(9(—Iog«9)=—

o 2 1) 4
we have I(0)=E, (ﬁlogf(X;é’)j = 9£9—2]=9—2



If 7" is an unbiased estimator of 8, then VarH(T) > /

n
2
9 CRLB.Consider the sufficient statistic Y, = max [Xl,...,Xn].
n
n-1
. n 1
The pdf of V is n[F(y)] f(v)- £ (v) = n[%) = and E,(Y,)

n-1
:I‘gy.y N dy = ne . S0, B, n—JrlY =0, l.e. n—JrlY Is an
0 g" n+1 n " no "

n " n

2
unbiased estimator of 6. Now, Var, (n 1y j - (n +1j Vcw“(Yn)




Clearly, Var, (n 1
n

Yn] < CRLB. Thus,the Cramer-Rao

Inequality is not applicable to this pdf. To see that this is so,

21 (o) (1:0) s =2 :’/(gj)ldm :ﬁ{ijoez(x)dx}

06 70 06 0 00| 6

-1 1 0 -1 /\x
— (?]jogf(x)dz+5£ :/(m)dz = [EJJ‘:Z(x)d:EJr g )
# j x; Q)dsz; In general, If the range of the pdf

depend on H,the Cramer-Rao inequality will not be applicable.

Thm3.4:1f 0 = §(a;1,. . xn) is the maximum likelihood estimate of &

andif 7" =/"(X,,..., X, ) is an unbiased estimator of ' () whose
variance coincides with the CRLB, then /~ (xl,. . xn) =7 (ﬁ(xl,. . :z:n))



EX3.19: X,...X ~N ,u,az), uelR >0, n>2.
(1) 0% isknown : 7(6) = u.

DI
f($;t9): 21 6272(:13_#) reR
TO
0 _ 0 11 V| _z—u
ﬂlogf(:z:,é’)— ﬂ{log@cf 202(:1; ,u)} ~
) - ) -
1(6)=E, (imgf(xe)j - E, [x;j‘j =%E9[(x—y)1
1_ 1 ) 1 ) )
:?VCLT’H X):?(Tzzy

S
I~
~
& |
=
N
S



(2) 1 is known : 7(6?) =0°.

w1 e 1 Ry
L(02 Ty, xn)zg\/go_ez _(zﬂaz)% 2
0 v (2, - p)’
802|0gL(02 ... xn):224[;( . ) —02]:0

= 5° = EZ(% — u)? is the MLE of &°.
N =1
= &° is an UMVUE of ¢° (Thm 3.4).

(3) u,0° : unknown : Consider estimation of o°.

Jofero®) - o ek

2 4
20° 4 20 o



_ - _ _
0 1 (z-u)
)= o(c*) afie) 2o . o’ ) _
1_ 1 ) 1 1 1
:_204 + 6E0|:(x—lu)2]=—204 T o0 o' = 25"
4
“CRLB=_ + .29 (T(H)zaz,.'. r'(e):l)
(fee)
20
Thus, any unbiased estimator T" of o° must satisfy Va'r(T) > 20"
n
_ 2
(n 12)8 ~;{2(n—1) Var(Sz)zVar( Gzln_zlSzj
O n — O
=( o jZVar (n—lZ)SZJ: o ~-2(n-1)= 20" 20" _CRrus.
n—1 o (n—l) n—-1 n



Thm3.5:If T" = /(Xl,...,Xn) is an unbiased estimator of some r*(é’)

whose variance coincides with the CRLB, then (- ; 6) is a member of

exponential class. Conversely, if f ( ; 6’) IS a member of exponential class,
then there exists an unbiased estimator, say 7", of some function of 7~ (9)
whose variance coincides with the CRLB (i.e., T" is an UMVUE of 7" (6)) .

Def 3.11: The retative efficiency of an unbiased estimator 1" of 7(9)
VCL’I’(T*)
Var(T) .

An unbiased estimator T"of z(6) is said to be efficient if re(T, T*) <1

to another unbiased estimator 7"of z(6) is given by re(T, T*) -

for all unbiased estimators T of () and for all 6 € Q. The efficiency of
an unbiased estimator 7' of 7(9) is e(T) - fre(T,T*), if 7"an unbiased

estimator of 7(9).



EX3.20: X,,...,X, ~ f(2:0)=0¢", x €(0,).
In EX3.16, we have shown that X is an UMVUE of %.
Let YV, = min[X1 ..... XJ. Then f, (y)

— n[l— (1— e % )Jn_l (6’6_6‘”) = (n&’)e_(ng)y S0, Y, ~ Exp(n@),

and have E(Y;) = i[or E(nY,)

] l .Thus, nY, Is
no %

unbiased for % and Var(nY;) =n*Var(Y;) = n’ =—.

1
Recall that Var()_() A = %
n



We have e(nYl):fr’e(nY X) = Vafr }/6’2

Y ) Var(nY) }g

(efficiency of nY)). .. X is efficient and nY, is a very poor

. 1 . . .. .
estimator of 2 since its efficiency is small for large n.



In this section, the concept of sufficiency will be used in our search for
UMVUESs. Recall that if X and Y are any two random variables,then we

have B(X)= E| B(X|Y)|, Var(X)=Var| B(X|V) |+ E| Var(X|7)
These toois are used to prove the following theorem.

Thm 3.6 : (Rao-Blackwell)

Let X ,....X be arandom sample from a density f ( ; 6?), and let

T= /(X1 .. X) be an unbiased estimator of 2'(9). Let S = s(Xl,. . .,Xn)
be a sufficient statistic. Define 7" = E(T‘S). Then

(@) T" is a statistic, and it is a function of the sufficient statistic S;

(b) T" is an unbiased estimator of z(6); that is, E,(T") =(6):

(©) Var,(T") < Var, (T) for every 6.




- The Rao-Blackwell theorem says that, given an unbiased estimator,
another unbiased estimator that is a function of sufficient statistic Is

a uniformly better unbiased estimator of 7(0).

Thm 3.7 : (Lemann-Scheffe)
Let X ,...,.X be arandom sample from a density f ( ; 6’), and let

S =s(X,,.... X, )be a complete sufficient statistic. If 7" =/"(), a
function of S, is an unbiased estimator of 1(6’), then 7" is an
UMVUE of 7(9).

« The Lemann-Scheffe theorem says that if a complete sufficient
statistic 5 exists, then there is an UMVUE of z(6), and the UMVUE

IS the unique unbiased estimator of 7(6’) which is a function of §S.



Def 3.12 : A sequence of estimators 7' = z;(Xl,. . .,Xn) IS defined

to be a consistent sequence of estimators of r(@) If for every ¢ >0

and every € Q, limP, H]; — 7(9)‘ < 5} =1. It is equivalent to

n—>0

im B | |7, ~=(6)

n—>0

28:|=O.

Thm3.8:If T =/(X,,....X,) is a sequence of estimators of z(6)
satisfying limE, {(7; —7(9))2} =0, forevery 0Q, then T Isa

consistent sequence of estimators of 7(9).



- Recall that the MSE of 7' Is given by
2
MSE (6)=E {(T -7(0)) }

7 n

=Var(1,)+[ ,(1,)-(6) ]

= Var(Tn) + bi (9)

An equivalent statement Is this: For every 8 € Q, if T' satisfies
(i) limVar(T,)=0, and
(i) limb? (6) =0,

then 7' Is a consistent sequence of estimators of T(H).



Thm3.9:Let T = /(X,,...,. X, ) be a consistent sequence

of estimators of 7(6’). Let a,,a,,... and §,b,,... be sequences

of constants satisfying
() lima =1,

(i) limb_=0,

N—>0

then the sequence U =a 1 +0 IS a consistent sequence
of estimators of 1(6’).

Def 3.13 : A sequence of estimators 7, = /(X

1I

X ) is said to

'~ "n

=7 6), for each

be asymptotically unbiased for z(6) if limE(T )
0 Qd

N



Def3.14:LletT and T " be asymptotically unbiased sequences of

estimators for 7(6’). The asymptotically relative efficiency of 7' relative to

Va'r(l;*)

. The sequence T~ is said to

T is defined to be a're(T ,T*) = lim
! TR e Va'r(l;)

be asymptotically efficient if m'e(]; M ) <1, for all other asymptotically

unbiased sequences 7', and for all & € Q2 The asymptotically efficiency of
T is defined to be ae(T) ) = are(T,,T").

Def 3.15 : A sequence of estimators T, of 7(6) is said to be asymptotically

(1, -x(6)] -

(0] —N|0,1], as n — o, where o(6) is a function of 6.

normal if



Def 3.16 : A sequence of estimators T of r(@) IS said to be best

asymptotically normal (BAN) if it is asymptotically normal and
oy LE(O)]
o*(0) =
1(6)
Remark 3.7 : Under certain regularity conditions, the MLE of 7(9)
IS BAN.

 forall 8 € Q, where I (9) IS the Fisher information.




