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Let X ,...,X be arandom sample from a density f(- ; 6’),

and let Q, called the parameter space, denote the set of
possible valuse that the parameter can assume. Recall
that a statistic is a function of the sample. Any statistic,

T = /(Xl,...,Xn), defines a from of data reduction or data
summary; it condenses the n random variables X ,..., X

into a single random variable. Data reduction in terms of
a statistic can also be viewed another way. Let X be the

range of values that (Xl,...,Xn) can take on. Then, a

particular statistic induces or defines a partition of X.



EX 2.1: Arandom sample of size 3 is selected from
a Bernoulli distribution, then

X ={(X,X,X,): X, =00r1i=123|

1(0,0,0),(0,0,1),...,(1,1,2)]

and Card(X)=8. Let/(a: T,,T )—x1+:1:2+:133.

174772773

Then the partition of X induced by /() IS

{ T,,, :1:3 T, T,
={(0,0 o)} U {(o 0,1),(0,1,0),(1,0,0)} U
((0,11),(1,0,1),(12,0) U {(11,2)}

:1: x x) 0,1,2,3}



A sufficient statistic is a particular statistic that
condenses X so that no information about @ is
lost. It is good for making inferences about 6.

Def 2.1: A statistic 1" = Z‘(Xl,---,Xn) IS defined to

be a sufficient statistic if the conditional distribution
of X,,...,X given T =t does not dependent on ¢
for any value ¢t of T.



e To use the above definition to verify a statistic 7' is a
sufficient statistic for &, we need to verify that the
conditional probability P(X1 =7,..,.X =T ‘T = t) does
not depend on @ for all fixed values of (a:la;n) and ¢.
Since {Xl =T,...,. X = a:n} IS a subset of {T = t},
P(X1 =Z,...X =T ‘T = t)
P(X,=x,...X, ==z and T =t
P(T =t)

1
P(X, =x,...X =z




I
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X (xl,...,a:n;é’)
g, (t,'H)
where le,---,Xn (xl,...,a;n;é’) Is the joint pmf of the

’

sample and g, (¢:0) is the pmf of T

e Note that Equation (2.1) is still appropriate to use
if (Xl,...,Xn) and 7" have continuous distributions.



EX22:X,....X ~iid Bernoulli(0)

f(:z;;é’) :97”(1—6)1_36, r=01 0<@<1. LetT:in.. Then
1=1

T ~ B(n,0) and its pmf is g(¢;0) = mef (1- 9)“‘t , t=0,...,n

fi o (@)

g 1)

IZ;IHT " (1— 6’)1_% ) 6)2% (1_ (9)”_25’% 1

) @ o(1-0)" _ @ 6(1-6)" _ @

and it does not depent on 6. T is a sufficient statistic.

2 P(X =g, X, =1 [T=t)=




Def 2.2 :Let X ,...,X be arandom sample from a

density f(- :0), where 6 may be a vector. The

statistics 7,,...,T are defined to be jointly sufficient
if the conditional distribution of X ,..., X given
T =t,.,T =t does notdepend on 6.

Thm21:If T =/(X,,....X ),....T. =7(X,....X )
IS a set of jointly sufficient statistics, then any set of
one-to-one functions of 7,,...,7' is also sufficient.




EX23:X,..,X ~ iidN (u0c°)
> X. and > X? are jointly sufficient.

= X and Z(XZ — )?)2 are also jointly sufficient.

Thm 2.2 :(Factorization theorem)

Let X ,...,X be arandom sample from a density

f ( ;9), where & may be a vector. A set of statistics
T =/X,...X),...T =7(X,...,X ) is jointly
sufflc:lent |ff there exists functlons g( " 6’) and
h(:z: xn) such thatforall z,...,z and 6,

17

le,_an(a;l, 2,:0)=g(t,....t :0)h(z,....,z,).



EX2.4:X,..,X ~Bernoulli(®)

f(2:0)=0"(1-0) , 2=0,1,0< 60 <1. Then

lean (xl ..... :z:n;é’) = ﬁf(xé’) — QZ”% (1— g)n—zxi
Set t = /(a:l ..... azn) = > z, and take
g(tié’) = 6’in (l— Q)n_Z% and h(:z:l ..... i

So T = ZXZ. is a sufficient statistic.

.....




EX25:X,...

H f(2,:0) = H Fa

1

(22)? "

1

(22)% o

Sett =2z and ¢, =z° Then XX and XX

are jointly sufficient statistics. By Thm2.1, X = 1ZXZ.

and S° = L

n—1

X, = iid N (u,0%), 6 =(u,07)

2
exp L
. 20°
1
exp| —

20

1
B 20° (xz B 'u)z

n (xz.z —2ur, + ,u2)

1=1

. (inz —2u2.x, + n,uz)

Z(XZ. — X)2 are also jointly sufficient.



EX2.6:X,...,X :random sample from a pdf
Vi , v €(0,1)

f(x,‘é’) B iO . O.W.
Then
n n -1
Hf(a:zﬁ) =H «9:132.9_1 = 0" (xl $n)
1=1 1=1

1
e [

Sett =z -z and take g(t;é’) = 0" (xlxn)

and h(:z;l---:z;n): ! Then T:ﬁXZ. is a
1=1

xl...xn

sufficient statistic.

0




EX2.7:X,..,X ~ ud U(6’1,92), 96[91,6’2].
Then

f(l";e) = = '][91,92](33),

and

n n 1

gf(zz'e) - H 0 — 0 '][el,ezj(xz')
1

_ '[[e,yn](yl)'][yle

(‘92 _(91)” 1 ,2](y”)'

Sett =y, t,=y ,and h(xl,...,:z:n) =1.Then Y,

and Y are jointly sufficient.



Further, if , =0 and 6, = 0, then

ﬁf(m@'e) - ﬁ% ' ][0,9](%)

1
- 0" d [0y, | (yl) 4 [0,0] (yn)

1
- o" d [0,6] (yn ) 4 10y, | (yl)

Sett=y , then Y s a sufficient statistic.




k

Def 2.3 : A family of densities f(- .0,...,0 ) Is called

an exponential family if it can be expressed as

F(2:6,....8) =a(8,...0)b(x)exp| Xe (6,....6)d () ],
for -.o < 2 < o0 and for all & € QQ, and for a suitable
choice of functions a(- ..... ) b() c].(- ..... ) and dj(-).

EX2.8: f(a: (9) =G .](O,oo)(x)

= f (:1:; 9) belongs to the exponential family.




EX2.9: X ~ #d N (u,0°), 0=(6,6,)=(u,0°)

f(rino)-

?

o (7)

1

V2ro

exp

1
= exp
\N27mOo

= {N (,u,az)} belongs to the exponential family.

1 1 2
\/Zaexp _202 (x_lu)
- i}

e (:1:2 — 2,ux+,uz)
(2 i

) zilyzjeXp ) zclrz v
\ i

Ly
O

Remark 2.1: Any family of densities for which the

range of valuse where the density is nonnegative

depends on & does not belong to the exponential

family.



EX2.10:
(1) A family of uniform densities does not belong to
the exponential family.

(2) A family of Binomial densities with n, p unknown
does not belong to the exponential family. If n is
known and & = p, then

(o)~ 1-0) 1y 0

— (Z]]{O,l,---,n} (x)exp[xlnp +(c—2)In(1- p)}

So {B(n,p)}with n known belongs to the

exponential family.



Thm23:Let X,...,X bearandom sample from a

pdf or pmf f (:z: .0,.. .,Hk) that belongs to an exponential
family given by

f(z:6,...0,)=a(8,....0,)b(z)exp Zk:cj(el,...,ek)dj(x) .

Then idl(Xi),. : .,Zn:dk (X) IS a set of jointly sufficient
=1 1=1

statistics.



EX2.11: X ~ iid Beta(6,,6,). Then

F(H + 9 ) 6? -1 6,-1
f($ 6’1:(92) RORG ) T I[o,l](x)
- T(6,+ 6, )
r(g );((9 )~ [o4] (2 )exp[( —1)In:z: + (92 —1)In(1— :z:)]

So {Beta( ., 2)}belongs to the exponential family.
By Thm2.3, ZIn(XZ.) and ZIn(l—XZ.) are jointly
i=1 i=1

sufficient statistics.



Recall that the purpose of a sufficient statistics is to

achieve data reduction without losing any important
information about the unknown parameter 6. Thus,

a statistic that achieves the most data condensation
while still retaining all the information about 8 might
be preferable. A formal definition of such a statistic

IS given below.

Def 2.4 : A sufficient statistic T = /(le---:Xn) IS
called a minimal sufficient statistic if it is a function
of any other sufficient statistic 7" =/~ (Xl,...,Xn).




e To say that /(:Izlazn) is a function of
a (a:l,...,xn), if /*(xl,...,xn) = /" (:z:l',...,a:n'),
then /(xl,...,:vn) = /*(CEl’,...,CEn').

e In terms of partition sets, if {Bt*}are the partition

sets for 7"and {4, |are the partition sets for T,

then every B, is a subset of some 4,.



Thm?24:Llet X,. X bearandom sample from
a pdf or pmff(x ;6’). For every two sample values

z,...,v. and z/,...,z ', if there exists a function

T =/7(X,,...,X ) such that the ratio

Feox (z,,-..,1,:0)

Loen
fo (310,50)

does not depend on ¢ iff /(z,,...,z ) =7/(z/,...,x "),

then T is a minimal sufficient statistic for 6.



EX212: X,...X ~ iid N (u,0°)
(i) If 1 and &° are unknown, then

[/(a:nc) 1 @Gexp{_l(x ) ﬂ)z}

|
ﬁf(a: 1,0 H\/jmeXp{_l(x,_ﬂﬂ

1=1




(%) does not depend on x and & if and only if
Yz =Yz and Y z’=>z"°
i=1 i=1 i=1 i=1
So » X. and ) X?* are jointly minimal sufficient
=1 =1

statistics for ¢ and o”.

(ii) If o° is known and x is unknown, then (*) does

not depend on x if and only if Y z. = z'. So
=1 =1

ZXZ. IS a minimal sufficient statistic.
1=1



(iii) If 12 is known and &* is unknown, then

]‘1[ f(z:0%) ) exp:— 23;2 Zl',(:v —ﬂ)z__
li[f(xi':az) exp B 2(1;2 Z::(SE —ﬂ)z_
= exp<\— 2(1;2 _Zzn:(% _ ﬂ)Z B Zznll(xz _ﬂ)Z_ >

(**) does not depend on &~ if and only if

Do —u) =X (e )

1=1 1=1

So Z(X — y)z is @ minimal sufficient statistic.
1=1



Def 2.5 : A statistic T = /(Xan) IS called an

ancillary statistic if its distribution does not depend on

the parameter 6.

EX213:X,...X ~ id U(6,6+1), —o <z <o
Y,...,Y ‘order statistics corresponding to the sample.

Asin EX 1.5, Sec1.4 , we can show that the pdf of the
sample range R is f, (r) = n(n —1)(1— r)fr"‘z, 0<r<l
l.e. R ~ Beta(n —1,2). Thus, the distribution of R does

not depend on # and R is an ancillary statistic.




Def 2.6 : Letf(x) be any pdf.

Then the family of pdfs

f(z - ), indexed by 6, 6 € (-»0,), is called the
location family with standard pdf f(z) and @ is called
the location parameter for the family.

« The above definition states that, if W is a random

variable with pdf f(w), then t

ne pdf of the random

variable X =W + 0 is f(z - 0).



EX2.14 : Suppose X ~ N (0,1). To form a location
family, we replace = with z — 1 to obtain

f(:c:ﬂ) = %exp{—%(x - ﬂ)z}-

So {N (u1)} is a location family.

EX2.15 : Suppose X ,...,X is a random sample such

that X =W +6, :=1,...,n,where -0 < 6 < o and
W.,...,W areiidr.v.'s with p.d.ff(w) which does not
depend on 6. Then the common pdf of X_ is f(a: — 6?).

Let YV,...,Y Dbe the order statistics in the sample. The
cdf of the sample range R =Y -V is



PlY — Y<fr’)

maxX mlnX < r)
max(W + 6?) mm(V[/; + H) < r)

(
\
(
\
[maxW +0-minW, -0 < r)
:

= \maxW man<r)

So the c.d.f of R does not depend on 8 and hence R
IS an ancillary statistic.

Def 2.7 : A statistic T = /(Xl,...,Xn) is defined to be

location-invariant iff /(a;’l +C,..., T + c) = z‘(xlxn)

for all values z,,...,x and all real c.



EX?2.16 : Assume that X ,..., X is a random sample

suchthat X =W +6, :=1,...,n, where -0 < 6 < o
is a parameter and W,,..., W are iid r.v.'s with pdf

f(w) which does not depend on 4. Then the common
pdf of X, is f(z - 0). Let T be a location-invariant
statistic. Then
T=/(z,...1,)
=/ [wl +0,...,w + 6’)
=7 (wew,)

is a function of W,,...,W alone. Hence T" must

have a distribution that does not dependent on 4 ;
l.e T is an ancillary statistic.



Def 2.8 : Let f(z) be any pdf. Then for any 6 >0,

the family of pdfs 2]{2) iIndexed by 6, is called

the scale family with standard pdff(x) and @ is

called the scale parameter for the family.

- The above definition states that, if W is a random
variable with pdf f(w), then the pdf of the random

variable X=6-W is 31{3]
0\ 6



Def 2.9 : Let f(x) be any pdf. Then for any -0 < 6 <

-0
and 6, > 0, the family of pdfs Hif(xﬁ 1), indexed by
2

2
the parameters 6 and @,,is called the location-scale

family with standard pdf f (:c)

Def 2.10 : A statistic 7= /(X,,..., X, ) is defined to be

scale-invariant if and only if
/(ca:l,...,cxn) = Z‘(a:l,...,a:n)

for all values z,,..., and all real ¢ > 0.



EX2.17: X,,..., X ~ iid F(gj 6 > 0. Then any

statistic that depend on the sample only through

XL L

the n —1values —,...,—2* is an ancillary statistic.
:En xn
For example,
T, + -+ x x
L n= Lyl
X X X
n n n

iIs an ancillary statistic. To see this fact, let
W,... W ~ ud F(w) with z. = Ow..



which does not depend on 6.




EX2.18 : Suppose X ,...,X is arandom sample
such that X =60W, i=1,...,n,where ¢ >0 and

W,,...,.W, are iid r.v.'s with p.d.f f(w)which does
not depend on &. Then the common pdf of X is
% f(a: —«9). Let T = /(Xl,...,Xn) be a scale-
iInvariant statistic. Then

T = /(:El,...,xn) = Z‘(le,...,ﬁwn) = /(wl,---,wn).
Since neither the joint dist. of w. nor T contain 6,

the distribution of T' does not depend on 4. T is
an ancillary statistic.



EX2.19 : Let X, and X, be iid observations from the
discrete distribution

P(r=0)=P(s=0+1)=P(z=0+2)=7,

where 60 is an integer. Let Y, <Y, be the order
statistics in the sample. We can show that R =Y, - Y]

Y +Y - . - -
and M =1 > 2 are jointly minimal sufficient statistics.

Consider a sample point, where m is an integer.



If we only comsider m, then 6 =m or 8 =m —1or

6 =m — 2. Suppose we know R =2, then ¥, =m -1
and Y, = m +1, with this additional information, the
only possible value for 8 is m —1.

Def 2.11: Let X ,...,X be arandom sample from
a pdf or pmf f(z ;0), and let T = /(X,,..., X, ) be
a statistic. The family of probability distributions of
T is defined to be complete iff E, [Z(T)J =0 for all

@ implies P[z(T) = O} =1 for all 8. Equivalently,

the statistic 7' = /(X,,..., X, ) is called a complete

statistic.



EX2.20: X ~ N (0,1), z(z) = . Then
E[z(x)] = E(x) = 0.
But P[g(x) = 0] = P(z =0)=0. This is a particular

distribution, not a family of distributions. If X ~ N (6,1),
We can show that if £(z) =0, thenP(z =0) =1.

EX221:X,..,X ~ «dBernoulli(@), 0 <6 <1

Let T = ZXZ. and let z be a function of T such that

E [z(T)j =0. Then

0



_(1-06) ;Z(t)m(lgejt
s|nce(1—9 0, VO<o<l

So [n]z(zﬁ) =0, Vt=0,...,n. But # 0 and so

2(t)=0, vt =0,..,n. ie. P[Z(T) — o] 1. Thus, T

IS a complete statistic.



EX222:X,.,X ~ ud U(0,0), 0>0.Then Y
is a sufficient statistic. Suppose z(Y, ) is a function

of Y, such that E,| z(Y,)|=0. Then

o=, 2(1,)]= /() (),

n-1
) I:Z(y)n[%] %dyn _ %j:z(yn "y,

= Ioez(yn )gn”_ldyn =0 = % :z(yn )yn”_ldyn =0

- z(@)-é’”‘l =0 = z(é’):O, Vo >0.

Thus, Y Is complete.




Thm 2.5 : If a minimal sufficient statistic exists, then

any complete statistic is also a minimal sufficient
statistic.

Thm?26:Let X,...,X bearandom sample from a

pdf or pmf f (:z;;é’l,. . .,Hk) that belongs to an ex-

ponential family given by

f(:6,..., Qk):a(é’l,...,ﬁk)b(x)exp{zk:cj(Hl,...,ﬁk)dj(a:)}.

Then Zn:dl(x) . .,Zn:dk (z,) is a set of jointly complete
i=1 =1

sufficient statistics if {(cl(el,...,@ )ck (Hlé’k)) 10 Q}

k

contains an open set in R".



Thm 2.7 : (Basu's theorem) If T'=/(X,,..., X, ) is

a complete (and minimal) sufficient statistic, then T
IS Independent of every ancillary statistic.

EX2.23: X,...,.X ~ iid N(u,o°). We know that

the sample mean X is, for every known &*, a
complete sufficient statistic for x4, —oo < 11 < oo,

Note that the sample variance S° = —Z(X ~- X)*

" —
IS a location-invariant statistic. To see thls, for any
real ¢, let T = /(Xl,...,Xn) = S°.



Then
/(X +c,.... X, +c)
L o IS 'O WL o G
| nz:l -

n—1%3

=L (X, + )~ (X +0)]

n—173

L S'(x - Xy =52
n-1=" "

=/ (X,,...X, ).

Thus, S° is an ancillary statistic.




EX2.24:X,..,.X ~ id Exp(0), f(:z::&’) = %e“”/e.

. 1 (=x Cw
The pdf is of the form gf(gj where f(w) =e ",

0 < w < @, i.e. the exponential distribution form a
scale family. Consider the statistic
X

1= Xl—l—..:n-|- X :le(Xl""'Xn)‘
Then
X X
Zf(ch,...,cX )= “ = L
" cX, ++cX X +-+X



So 7, is a scale invariant statistic and hence an

ancillary statistic. Since T =) X_ is a complete
1=1

statistic. We conclude T' and I, are independent
Thus, we have

0=E,(X,)=E,| > X,




