
Chapter 7

Tests of Statistical Hypotheses

1 Tests about proportions

Example 1.1 Suppose a manufacturer of a certain printed circuit observes that about

p = 0.06 of the circuits fail. An engineer and statistician working together suggest some

changes that might improve the design of the product. To test this new procedure, it was

agreed that n = 200 circuits would be produced using the proposed method and then

checked. Let Y equal the number of these 200 circuits that fail. Clearly, if the number

of failures, Y , is such that Y/200 is about equal to 0.06, then it seems that the new

procedure has not resulted in an improvement. If Y is small so that Y/200 is about 0.02

or 0.03, we might believe that the new method is better than the old. On the other hand,

if Y/200 is 0.09 or 0.10, the proposed method has perhaps caused a greater proportion of

failures. What we need to establish is a formal rule that tells us when to accept the new

procedure as an improvement. For example, we could accept the new procedure if Y ≤ 7

or Y/n ≤ 0.035. If we believe these trials, using the new procedure, are independent and

have about the same probability of failure on each trial (i.e. i.i.d.), then Y ∼ B(200, p).

Our goal is to make a statistical inference about p using the unbiased estimator p̂ = Y/200.

Definition 1.1 Statistical hypothesis is an assertion or conjecture about a population

parameter. If the statistical hypothesis completely specifies the distribution, then it is

call simple, otherwise, it is called composite.

Definition 1.2 Two complementary hypothesis in a statistical hypothesis testing prob-

lem are called the null hypothesis (denoted by H0) and alternative hypothesis (denoted by

H1).
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• In Example 1.1, The no change hypothesis H0 : p = 0.06 is a simple null hypothesis.

The hypothesis H1 : p < 0.06 is a composite alternative hypothesis.

Definition 1.3 A test of a statistical hypothesis is a rule or procedure for deciding

whether to reject H0 and accept H1 as true or to accept H0 and reject H1. We always say

that H0 is tested versus H1.

• In Example 1.1, a possible test is: Reject H0 : p = 0.06 and accept H1 : p < 0.06 if

Y ≤ 7. The set {y : y ≤ 7} is called the critical region.

• Note that tests of H0 : p = 0.06 versus H1 : p < 0.06 or H0 : p = 0.06 versus

H1 : p > 0.06 are called one-sided tests. Test of H0 : p = 0.06 versus H1 : p ̸= 0.06 is

called a two-sided test.

Types of errors and sizes of errors:

(i) Type I error: Reject H0 when it is true.

(ii) Type II error: AcceptH0 when it is false.

(iii) Size of a type I error=P(reject H0 |H0 is true)

(iii) Size of a type II error=P(accept H0 |H0 is false) = β

Definition 1.4 If H0 is a simple hypothesis, then the significance level of the test is

defined to be the size of the type I error (usually denoted by α). That is,

α = P(reject H0 |H0 is true).

Example 1.2 In Example 1.1,

α = P(Y ≤ 7 | p = 0.06) =
7∑

y=0

(
200

y

)
(0.06)y(0.94)200−y.

Since n = 200 is large and p is small, α can be approximated by a Poisson distribution

with λ = np = 200(0.06) = 12; i.e.,

α ≈
7∑

y=0

12ye−12

y!
= 0.09.
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Suppose p has been improved to 0.03 (i.e. H1 : p = 0.03), then

β = P(Y > 7 | p = 0.03) =
200∑
y=8

(
200

y

)
(0.03)y(0.97)200−y

= 1−
7∑

y=0

(
200

y

)
(0.03)y(0.97)200−y ≈ 1−

7∑
y=0

6ye−6

y!
= 0.256.

Remark 1.1 For a fixed sample size, it is impossible to make both types of error proba-

bilities arbitrary small. In searching for a good test, it is common to restrict consideration

to tests that control the type I error probability at a specified level. Within this class of

tests, we search for tests that have Type II error probability that is as small as possible.

Tests hypothesis for one proportion:

Let Y be the number of successes in n independent Bernoulli trials with probability of

success p. Then Y ∼ B(n, p). Consider testing H0 : p = p0 versus H1 : p > p0, where p0

is some specified probability of success. By Central Limit Theorem, we know that when

H0 is true
Y/n− p0√
p0(1− p0)/n

∼ N(0, 1), n → ∞,

or Y/n ∼ N(p0, p0(1 − p0)/n) approximately as n is large. Thus a test of H0 : p = p0

versus H1 : p > p0 is given by

Reject H0 if and only if Z =
Y/n− p0√
p0(1− p0)/n

≥ zα or Y/n ≥ p0 + zα
√
p0(1− p0)/n.

The significance level of this test is approximately α.

Example 1.3 It was claimed that many commercially manufactured dice are not fair

because the “spots” are really indentations so that, for example, the 6-side is lighter than

the 1-side. Let p equal the probability of rolling a 6 with one of these dice. To test

H0 : p = 1/6 against H1 : p > 1/6, several of these dice will be rolled to yield a total of

n = 8000 observations. Let Y be the number of times that six resulted in the 8000 trials.

The test statistic is

Z =
Y/8000− 1/6√
(1/6)(5/6)/8000

.
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At the significance level of α = 0.05, the critical region is

z ≥ z0.05 = 1.645.

Suppose the results of the experiments yielded y = 1389. We have

z =
1389/8000− 1/6√
(1/6)(5/6)/8000

= 1.670 > z0.05 = 1.645.

Thus H0 is rejected and these experimental results indicate that these dice favor a 6 more

than a fair die would.

• We summarize the tests of hypotheses for one proportion in Table 1.

Table 1: Tests of Hypotheses for One Proportion

H0 H1 Test Statistic Critical Region
p = p0 p > p0 Z ≥ zα

p = p0 p < p0 Z =
Y/n− p0√
p0(1− p0)/n

Z ≤ −zα

p = p0 p ̸= p0 |Z| ≥ zα/2

• p-value: The p-value is the probability, under the null hypothesis H0, that the test

statistic is equal to or exceeds the observed value of the test statistic in the direction of

the alternative hypothesis. The p-value is can be used in making a decision for a test. In

Example 1.3, the observed value of the test statistic was z = 1.67. Since the alternative

hypothesis was H1 : p > 1/6, the p-value is

p-value = P(Z ≥ 1.67 |H0) = 0.0475.

Since this p-value is less than α = 0.05 and this would lead to rejection of H0 at an

α = 0.05 significance level. If the alternative hypothesis is two-sided, i.e. H1 : p ̸= 1/6,

the the p-value is P(|Z| ≥ 1.67 |H0) = 2P(Z ≥ 1.67 |H0) = 0.095 and would not lead to

rejection of H0 at α = 0.05.

Tests hypothesis for two proportions:

Often there is interest in tests about p1 and p2, the probabilities of success for two different

distributions. Let Y1 and Y2 be the number of successes in n1 and n2 independent trials
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with probabilities of success p1 and p2, respectively. Then Y1/n1 ∼ N(p1, p1(1 − p1)/n1)

approximately and Y2/n2 ∼ N(p2, p2(1−p2)/n2). Thus Y1/n1−Y2/n2 ∼ N(p1−p2, p1(1−
p1)/n1 + p2(1− p2)/n2) approximately. So

Z =
Y1/n1 − Y2/n2 − (p1 − p2)√
p1(1− p1)/n1 + p2(1− p2)/n2

∼ N(0, 1) approximately.

Consider testing H0 : p1 = p2 = p. If p is unknown, we shall estimate p with p̂ =

(Y1 + Y2)/(n1 + n2). When H0 is true, we obtain the test statistic

Z =
Y1/n1 − Y2/n2√

p̂(1− p̂)(1/n1 + 1/n2)

which has an approximate N(0, 1) distribution. Three tests of hypotheses for two propor-

tions are summarized in Table 2

Table 2: Tests of Hypotheses for Two Proportions

H0 H1 Test Statistic Critical Region
p1 = p2 p1 > p2 Z ≥ zα

p1 = p2 p1 < p2 Z =
Y1/n1 − Y2/n2√

p̂(1− p̂)(1/n1 + 1/n2)
Z ≤ −zα

p1 = p2 p1 ̸= p2 |Z| ≥ zα/2

Example 1.4 (Exercise 7.1-18, p352) The April 18, 1994, issue of Time magazine re-

ported the results of a telephone poll of 800 adult Americans, 605 of them nonsmokers,

who were asked the following question: “Should the federal tax on cigarettes be raised

by $1.25 to pay for health reform?” Let p1 and p2 equal the proportions of nonsmokers,

respectively, who would say yes to this question. Given that y1 = 351 nonsmokers and

y2 = 41 smokers said yes. (a) With α = 0.05, test H0 : p1 = p2 against H1 : p1 ̸= p2.

(b) Find a 95% confidence interval for p1 − p2. Is your interval in agreement with the

conclusion of part (a)? (c) Find a 95% confidence interval for p, the proportion of adult

Americans who would say yes.
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2 Tests about one mean and one variance

Let X1, . . . , Xn be a random sample from N(µ, σ2). In this section, we study the tests

about the mean µ and variance σ2.

(i) Tests of H0 : µ = µ0 when σ2 is known.

Consider testing H0 : µ = µ0 versus H1 : µ > µ0. We know that under H0

Z =
X − µ0

σ/
√
n

∼ N(0, 1).

When the sample mean X is close to µ0 (i.e. Z is small), we tend to accept H0. However,

if X is far away from µ0 (i.e. Z is large), we tend to reject H0. Thus a possible test is

given by

Reject H0 if and only if Z ≥ zα or X ≥ µ0 + zα
σ√
n
.

Tests of H0 : µ = µ0 versus H1 : µ < µ0 and H0 : µ = µ0 versus H1 : µ ̸= µ0 can be

obtained in a similar fashion. These tests are summarized in Table 3.

Table 3: Tests of Hypotheses about µ, σ2 known.

H0 H1 Test Statistic Critical Region
µ = µ0 µ > µ0 Z ≥ zα or X ≥ µ0 + zα

σ√
n

µ = µ0 µ < µ0 Z =
X − µ0

σ/
√
n

Z ≤ −zα or X ≤ µ0 − zα
σ√
n

µ = µ0 µ ̸= µ0 |Z| ≥ zα/2 or |X − µ0| ≥ zα/2
σ√
n

Example 2.1 Let X1, . . . , X52 is a random sample from N(µ, 100). Consider testing

H0 : µ = 60 versus H1 : µ > 60. Suppose we obtain the observed sample mean x = 62.75.

For a significance level of α = 0.05, we see that x = 62.75 > 62.718 = 60 + (1.645)
(

10√
52

)
.

Hence we tend to reject H0. Note that X ∼ N(60, 100/52) under H0 and

p-value = P(X ≥ 62.75 |µ = 60)

= P

(
X − 60

10/
√
52

≥ 62.75− 60

10/
√
52

|µ = 60

)

= 1− Φ

(
62.75− 60

10/
√
52

)
= 1− Φ(1.983) = 0.0237.
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Since the p-value is less than α = 0.05, we get the same decision of rejection. Note that

if the alternative is two-sided H1 : µ ̸= 60, then p-value= 2(0.0237) = 0.0474.

(ii) Tests of H0 : µ = µ0 when σ2 is unknown.

When σ2 is unknown, we know that under H0

T =
X − µ0

S/
√
n

∼ t(n− 1).

Therefore tests about H0 : µ = µ0 can be obtained in a similar way as case (i). These

tests are summarized in Table 4.

Table 4: Tests of Hypotheses about µ, σ2 unknown.

H0 H1 Test Statistic Critical Region
µ = µ0 µ > µ0 T ≥ tα(n− 1) or X ≥ µ0 + tα(n− 1) S√

n

µ = µ0 µ < µ0 T =
X − µ0

S/
√
n

T ≤ −tα(n− 1) or X ≤ µ0 − tα(n− 1) S√
n

µ = µ0 µ ̸= µ0 |T | ≥ tα/2(n− 1) or |X − µ0| ≥ tα/2(n− 1) S√
n

Example 2.2 Let X (in millimeters) be the growth in 15 days of a tumor induced in

a mouse. Assume that the distribution of X is N(µ, σ2). To test H0 : µ = 4.0 against

H1 : µ ̸= 4.0, we take a random sample of size n = 9 and observe that x = 4.3 and

s = 1.2. Do we accept or reject H0 at the 10% significance level?

Solution: Since

|t| = |x− 4.0|
s/
√
9

=
|4.3− 4.0|
1.2/

√
9

= |0.75| < t0.05(8) = 1.860,

we do not reject H0 at the 10% significance level. Note that

p-value = P (|T | ≥ 0.75 |H0) = 2P (T ≥ 0.75 |H0).

From the table, we see that 0.706 = t0.25(8) < 0.75 < 1.397 = t0.10(8), so 0.10 < P (T ≥
0.75 |H0) < 0.25. Hence 0.20 < p-value < 0.50 and this gives the same result. The

computer gives the p-value to be 0.475.

(iii) Paired t tests:
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Sometimes we are interesting in comparing the means of two different distributions

or populations. Let (X1, Y1), . . . , (Xn, Yn) be n pairs of dependent measurements and let

Di = Xi − Yi, ı = 1, 2, . . . , n. Assume D1, . . . , Dn is a random sample from N(µD, σ
2).

Consider the null hypothesis H0 : µX = µY , or equivalently, H0 : µD = 0. Then under H0

T =
D − 0

SD/
√
n
∼ t(n− 1).

Hence the appropriate t-test for a single mean could be used, selecting from Table 4.

Example 2.3 Twenty-four girls in the 9th and 10th grades were put on an ultra-heavy

rope jumping program. Someone thought that such a program would increase their speed

when running the 20-yard dash. LetD equal the difference in time to run the 40-yard dash-

the “before program time” minus the “after program time.” Assume that D ∼ N(µD, σ
2
D)

(approximately). We shall test H0 : µD = 0 against H1 : µD > 0 at a significance level of

α = 0.05. Suppose 24 observations of D are used and from these data we get d = 0.079

and sd = 0.255. Then the test statistic is given by

t =
0.079− 0

0.255/
√
24

= 1.518 < t0.05(23) = 1.714.

Thus we do not reject H0. Note that

p-value = P (T ≥ 1.518 |H0).

From the table, we see that 1.319 = t0.10(23) < 1.518 < 1.714 = t0.05(23). Hence 0.05 <

p-value < 0.10. The p-value also gives the same conclusion.

(iv) Tests of hypotheses about σ2, µ unknown:

Consider testing H0 : σ2 = σ2
0 versus H1 : σ2 > σ2

0. When µ is unknown, we know

that under H0

(n− 1)S2

σ2
0

∼ χ2(n− 1).

Clearly, when S2 is large (i.e. (n−1)S2

σ2
0

is large), we tend to reject H0. Thus a possible test

is given by

Reject H0 if and only if
(n− 1)S2

σ2
0

≥ χ2
α(n− 1) or S2 ≥ σ2

0χ
2
α(n− 1)

n− 1
.

Tests about H0 : σ
2 = σ2

0 are summarized in Table 5.
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Table 5: Tests of Hypotheses about σ2, µ unknown.

H0 H1 Test Statistic Critical Region

σ2 = σ2
0 σ2 > σ2

0
(n−1)S2

σ2
0

≥ χ2
α(n− 1) or S2 ≥ σ2

0χ
2
α(n−1)

n−1

σ2 = σ2
0 σ2 < σ2

0

(n− 1)S2

σ2
0

(n−1)S2

σ2
0

≤ χ2
1−α(n− 1) or S2 ≤ σ2

0χ
2
1−α(n−1)

n−1

σ2 = σ2
0 σ2 ̸= σ2

0
(n−1)S2

σ2
0

≥ χ2
α/2(n− 1) or (n−1)S2

σ2
0

≤ χ2
1−α/2(n− 1)

or S2 ≥
σ2
0χ

2
α/2

(n−1)

n−1
or S2 ≤

σ2
0χ

2
1−α/2

(n−1)

n−1

Example 2.4 A psychology professor claims that the variance of IQ scores for college

students is equal to σ2 = 100. To test this claim, it is decided to test the hypothesis

H0 : σ2 = 100 against H0 : σ2 ̸= 100. Suppose a random sample of n = 23 students is

selected and s2 = 147.82. At α = 0.05 significance level, H0 will be rejected if

(n− 1)s2

σ2
0

=
(22)(147.82)

100
= 32.52 ≥ χ2

α/2(22) = χ2
0.025(22)

or
(n− 1)s2

σ2
0

= 32.52 ≤ χ2
1−α/2(22) = χ2

0.975(22).

Since χ2
0.025(22) = 36.78 > 32.52 > χ2

0.975(22) = 10.98, we do not reject H0.

(v)Tests of hypotheses about σ2, µ known:

When µ is known, we know that under H0∑n
i=1(Xi − µ)2

σ2
0

∼ χ2(n).

Thus tests about H0 : σ
2 = σ2

0 can be obtained in a similar way as case (iv). These tests

are summarized in Table 6.

Table 6: Tests of Hypotheses about σ2, µ known.

H0 H1 Test Statistic Critical Region

σ2 = σ2
0 σ2 > σ2

0

∑n

i=1
(Xi−µ)2

σ2
0

≥ χ2
α(n)

σ2 = σ2
0 σ2 < σ2

0

∑n
i=1(Xi − µ)2

σ2
0

∑n

i=1
(Xi−µ)2

σ2
0

≤ χ2
1−α(n)

σ2 = σ2
0 σ2 ̸= σ2

0

∑n

i=1
(Xi−µ)2

σ2
0

≥ χ2
α/2(n)

or
∑n

i=1
(Xi−µ)2

σ2
0

≤ χ2
1−α/2(n)
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3 Tests of the equality of two normal distributions

Let independent random variables X and Y have normal distributions N(µX , σ
2
X) and

N(µY , σ
2
Y ), respectively.

(i) Tests of hypotheses for the equality of two means:

Assume that σ2
X = σ2

Y (unknown). Consider a test of H0 : µX = µY against H1 : µX >

µY . Let

T =
X − Y

Sp

√
1/n+ 1/m

,

where

Sp =

√
(n− 1)S2

X + (m− 1)S2
Y

n+m− 2
.

Then T ∼ t(n+m− 2) under H0. A possible test is then given by

Reject H0 if and only if T ≥ tα(n+m− 2).

Tests about H0 : µX = µY are summarized in Table 7.

Table 7: Tests of Hypotheses for equality of two means.

H0 H1 Test Statistic Critical Region
µX = µY µX > µY T ≥ tα(n+m− 2)

µX = µY µX < µY T = X−Y

Sp

√
1/n+1/m

T ≤ −tα(n+m− 2)

µX = µY µX ̸= µY |T | ≥ tα/2(n+m− 2)

Example 3.1 A product is packaged using a machine with 24 filler heads numbered 1

to 24, with the odd numbered heads on one side of machine and the even on the other

side. Let X and Y equal the fill weights in grams when a package is filled by an odd-

numbered head and an even-numbered head, respectively. Assume that X ∼ N(µX , σ
2
X)

and Y ∼ N(µY , σ
2
Y ) and X and Y are independent. Would like to test H0 : µX = µY

against µX ̸= µY . To perform the test, after the machine has been set up and is running,

we select one package at random from each filler head and weight it. Take n = m = 12

and from the data we get x = 1076.75, s2x = 29.30, y = 1072.33 and s2y = 26.24. Then the
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value of the test statistic is

t =
1076.75− 1072.33√

11(29.30)+11(26.24)
22

(
1
12

+ 1
12

) = 2.05.

At an α = 0.10 significance level, we have

|t| = 2.05 > t0.05(22) = 1.717.

We conclude that H0 is rejected at α = 0.10 significance level. Note that

|t| = 2.05 < t0.025(22) = 2.074.

So H0 would not be rejected at α = 0.05 significance level. That is the p-value is between

0.05 and 0.10.

Discussions: If the variances of X and Y are known, then the statistic for testing

H0 : µX = µY is

Z =
X − Y√
σ2
X

n
+

σ2
Y

m

,

and Z ∼ N(0, 1) under H0. If the variances are unknown and the sample sizes are large,

the appropriate test statistic is

Z =
X − Y√
S2
X

n
+

S2
Y

m

,

and Z ∼ N(0, 1) approximately.

Example 3.2 The target thickness for Fruit Flavored Gum and for Fruit Flavored Bubble

Gum is 6.7 hundredths of an inch. Let the independent random variables X and Y equal

the respective thickness of these gums in hundredths of an inch and assume that their

distributions are N(µX , σ
2
X) and N(µY , σ

2
Y ), respectively. Because bubble gum has more

elasticity than regular gum, it seems as if it would be harder to roll it out to the correct

thickness. Thus we shall test H0 : µX = µY against H1 : µX < µY using sample sizes

n = 50 and m = 40. Suppose from the data we have x = 6.701, sx = 0.108, y = 6.841

and sy = 0.155. Since at an approximate significance level of α = 0.01 the test statistic is

z =
6.701− 6.841√
0.1082

50
+ 0.1552

40

= −4.848 < −2.326 = −z0.01,

the null hypothesis is clearly rejected.
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(ii) Tests of hypotheses for the equality of two variances:

Consider testing H0 : σ2
X = σ2

Y (or σ2
X/σ

2
Y = 1). Take random samples of n ob-

servations of X and m observations of Y . Recall that (n − 1)S2
X/σ

2
X ∼ χ2(n − 1) and

(m− 1)S2
Y /σ

2
Y ∼ χ2(m− 1). Thus when H0 is true,

F =

(n−1)S2
X

σ2
X

/(n− 1)

(m−1)S2
Y

σ2
Y

/(m− 1)
=

S2
X

S2
Y

∼ F (n− 1,m− 1).

When H0 is true, we would expect the observed value of F to be close to 1. Tests about

H0 : σ
2
X = σ2

Y are summarized in Table 8.

Table 8: Tests of Hypotheses for equality of variances.

H0 H1 Test Statistic Critical Region
σ2
X = σ2

Y σ2
X > σ2

Y F ≥ Fα(n− 1,m− 1)

σ2
X = σ2

Y σ2
X < σ2

Y F =
S2
X

S2
Y

F ≤ F1−α(n− 1,m− 1)

σ2
X = σ2

Y σ2
X ̸= σ2

Y F ≥ Fα/2(n− 1,m− 1)
or F ≤ F1−α/2(n− 1,m− 1)

Remark 3.1 F1−α(n− 1,m− 1) =
1

Fα(m− 1, n− 1)
.

Example 3.3 To measure air pollution in a home, let X and Y equal the amount of

suspended particulate matter (in µg/m3) measured during a 24-hour period in a home in

which there is no smoker and a home in which there is a smoker, respectively. (Assume that

X ∼ N(µX , σ
2
X) and Y ∼ N(µY , σ

2
Y ).) We shall test the null hypothesis H0 : σ

2
X/σ

2
Y = 1

against the alternative hypothesis H1 : σ2
X/σ

2
Y > 1. If a random sample of size n = 31

yielded x = 93 and sx = 12.9 while a random sample of size m = 31 yielded y = 132

and sy = 7.1. Define a critical region and give your conclusion if α = 0.05. Now test

H0 : µX = µY against H1 : µX < µY if α = 0.05.
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