
CHAPTER 2

Valuation

2.1. Contingent claim

Assumption. The law of one price holds.

Definition 2.1. A contingent claim is a random variable Z : RS −→ [0,∞). Through-

out this chapter we may regard Z as a vector in R
S with Z ≥ 0.

Remark 2.2. If the market is complete, i.e., M = span{X1, X2, ..., XJ} = R
S, then

for Z ∈ R
S, there exist a1, a2, ..., aJ ∈ R such that

Z =
J∑

j=1

ajXj,

then

q(Z) = q

(
J∑

j=1

ajXj

)
=

J∑
j=1

ajq(Xj) =
J∑

j=1

ajPj.

Note that the value of q(Z) is unique, since q is a function.

Question. How about the case of incomplete market? There is a big problem: q is

defined on M. For general Z ∈ R
S, how can we define it?

Definition 2.3. Define qu, ql : R
S → R by

qu(Z) := min
h
{hTP : hTX ≥ Z} (upper bound),

ql(Z) := max
h
{hTP : hTX ≤ Z} (lower bound).

27
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(Why we call them upper and lower bound, will be explained later.)

Remark 2.4. (1) qu(Z) is the lowest price of a portfolio, the payoff which domi-

nates the contingent claim Z.

(2) ql(Z) is the highest price of a portfolio, the payoff which is dominated the con-

tingent claim Z.

Proposition 2.5. No strong arbitrage =⇒ qu(Z) = q(Z) = ql(Z), for all Z ∈M.

Proof. Since Z ∈M, there exists a portfolio k such that Z = kTX. Hence,

kTP ≥ min{hTP : hTX ≥ Z}.

By the definition of qu and ql, qu(Z) ≤ q(Z). Similarly, we can get

qu(Z) ≤ q(Z) ≤ ql(Z) for all Z ∈M.

Suppose qu(Z) < q(Z) for some Z ∈M, then there exists a portfolio l such that

lTX ≥ Z and lTP < q(Z).

Let h be a portfolio such that hTX = Z and hTP = q(Z). Then

(l − h)TX = lTX − hTX ≥ Z − Z = 0,

(l − h)TP = lTP − hTP < q(Z)− q(Z) = 0.

This means that l − h is a strong arbitrage, which leads to a contradiction.

Thus, qu(Z) = q(Z) for all Z ∈M.

Similarly for proving ql(Z) = q(Z) for all Z ∈M. �
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Example 2.6. (1) Two states and one security with P1 = 1, X1 = (1, 2).

Consider the contingent claim Z = (1, 1) (=⇒ Z �∈ M), then

qu(Z) = min{hTP1 : h
TX ≥ Z} = min{h : (h, 2h) ≥ (1, 1)} = 1,

ql(Z) = max{hTP1 : h
TX ≤ Z} = max{h : (h, 2h) ≤ (1, 1)} = 1

2
.

(2) Suppose that there are two securities and 3 states:

security 1: P1 =
1

2
, X1 = (1, 1, 1),

security 2: P2 = 1, X2 = (1, 2, 4).

Find qu(Z1) and ql(Z1) for Z1 = (0, 0, 1).

h1+h2=0 h1+2h2=0

h1+4h2=1

(-1/3.1/3)

Figure 2.1

(a) By the definition, we have

qu(0, 0, 1) = min{hTP : hTX ≥ Z1}

= min

⎧⎪⎨
⎪⎩(h1, h2)

⎛
⎜⎝ 1/2

1

⎞
⎟⎠ : (h1, h2)

⎛
⎜⎝ 1 1 1

1 2 4

⎞
⎟⎠ ≥ (0, 0, 1)

⎫⎪⎬
⎪⎭

= min
h1.h2

{
1

2
h1 + h2 : (h1 + h2, h1 + 2h2, h1 + 4h2) ≥ (0, 0, 1)

}
,
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i.e., we aim to solve the optimization problem

min
h1.h2

(
1

2
h1 + h2

)

subject to the constraints

h1 + h2 ≥ 0, h1 + 2h2 ≥ 0, and h1 + 4h2 ≥ 1.

By linear programming, we get the optimal point =

(
−1

3
,
1

3

)
(See Figure

2.1). Thus,

min
h1.h2

(
1

2
h1 + h2

)
=

1

2

(
−1

3

)
+

1

3
=

1

6
,

i.e., qu(0, 0, 1) =
1

6
.

(b) Similarly as above, we have

ql(0, 0, 1) = max
h1.h2

{
1

2
h1 + h2 : (h1 + h2, h1 + 2h2, h1 + 4h2) ≤ (0, 0, 1)

}
,

i.e., we aim to solve the optimization problem

max
h1.h2

(
1

2
h1 + h2

)

subject to

h1 + h2 ≤ 0, h1 + 2h2 ≤ 0, h1 + 4h2 ≤ 1.

Similar argument as above, we have ql(0, 0, 1) = 0.

Moreover, we can compute some more examples:

(i) If Z2 = (1, 0, 0), then qu(1, 0, 0) =
1

3
, ql(1, 0, 0) = 0.

(ii) If Z3 = (1, 0, 1), then qu(1, 0, 1) =
1

2
, ql(1, 0, 1) = 0.
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(3) Suppose that there are two securities and three states.

P =

⎛
⎜⎝ P1

P2

⎞
⎟⎠ =

⎛
⎜⎝ 1

2

⎞
⎟⎠ , X =

⎛
⎜⎝ X1

X2

⎞
⎟⎠
⎛
⎜⎝ 1 1 1

2 3 4

⎞
⎟⎠ .

Consider a contingent claim Z = (3, 4, 5). Since

Z =

(
1 1

)⎛⎜⎝ 1 1 1

2 3 4

⎞
⎟⎠ ,

we get Z ∈M, but

qu(Z) = min
h

⎧⎪⎨
⎪⎩hTP :

(
h1 h2

)⎛⎜⎝ 1 1 1

2 3 4

⎞
⎟⎠ ≥ ( 3 4 5

)⎫⎪⎬
⎪⎭

= min
h1,h2

{h1 + h2 : h1 + 2h2 ≥ 3, h1 + 3h2 ≥ 4, h1 + 4h2 ≥ 5}

= −∞.

(See Figure 2.2 for its graph) and

ql(Z) = max
h

⎧⎪⎨
⎪⎩hTP :

(
h1 h2

)⎛⎜⎝ 1 1 1

2 3 4

⎞
⎟⎠ ≤ ( 3 4 5

)⎫⎪⎬
⎪⎭

= ∞.

Remark 2.7. qu and ql are not linear. For example, as in Example 2.6(2), we have

qu(0, 1, 0) =
1

2
, qu(1, 0, 0) =

1

3
, qu(1, 1, 0) =

1

2
.

This implies that

qu(1, 1, 0) �= qu(1, 0, 0) + qu(0, 1, 0),

i.e., qu is not a linear functional.

Proposition 2.8. No strong arbitrage =⇒ qu(Z) ≥ ql(Z), for all Z ∈ R
S.
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h1+4h2=5

(1,1)

h1+3h2=4

h1+2h2=3

Figure 2.2

Proof. Suppose that qu(Z) < ql(Z) for some Z ∈ R
S. By the definition of qu and ql,

there exist portfolios m and n such that

mTX ≤ Z ≤ nTX and mTP > nTP.

This implies that

(n−m)TX = nTX −mTX ≥ 0,

(n−m)TP = nTP −mTP < 0.

This means that n−m is a strong arbitrage. �

Proposition 2.9. No arbitrage =⇒ qu(Z) > ql(Z), for all Z �∈ M.

Proof. We only have to prove that qu(Z) �= ql(Z), for all Z �∈ M.

Suppose that qu(Z) = ql(Z), for some Z �∈ M. Then there exist portfolios m and n such

that

mTX ≤ Z ≤ nTX and mTP = nTP = qu(Z).
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This implies that

(n−m)TX = nTX −mTX ≥ 0,

(n−m)TP = nTP −mTP = 0.

Since Z �∈ M,

mTX < Z ≤ nTX or mTX ≤ Z < nTX,

which means that (n−m)TX > 0, i.e., (n−m) is an arbitrage. �

Remark 2.10. Due to Propositions 2.5, 2.8, and 2.9 we see that if the market model

is arbitrage-free,

(1) qu(Z) > ql(Z), for all Z �∈ M.

(2) qu(Z) = ql(Z) = q(Z), for all Z ∈M.

2.2. Valuation functional

Definition 2.11. A valuation functional is an extension of the payoff pricing functional

on R
S, i.e., the valuation functional is a linear functional Q : RS → R and

Q(Z) = q(Z) for all Z ∈M. (2.1)

Remark 2.12. (1) If the market is complete, the valuation functional and the

payoff pricing functional are identical, i.e.,

Q(Z) = q(Z) = qu(Z) = ql(Z) for all Z ∈ R
S.

(2) If the market is incomplete, the valuation functional is not unique. Both of the

functional qu and ql satisfy (2.1), but they may not be valuation functionals, since

they are not linear.
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From this remark, we see why we construct this new functional instead of using directly

the functionals qu and ql. The valuation functional must be linear. If the valuation

functional is not linear, this causes an arbitrage in the model.

Example 2.13. Suppose that there are two states and a single security with payoff

X1 = (1, 2) and P1 = 1. The asset span

M = span{(1, 2)} = {(α, 2α) : α ∈ R}.

Thus, the payoff pricing function

q(α, 2α) = α · 1 = α.

We aim to find q1, q2 ∈ R such that

Q(z1, z2) = q1z1 + q2z2 and Q(α, 2α) = q(α, 2α) = α.

Plugging the later equation into the first one, we get

Q(α, 2α) = q1α + 2q2α = α, for all α.

This implies q1 + 2q2 = 1. Q is strictly positive, if q1, q2 ≥ 0. Thus, each function

Q : R2 −→ R defined by

Q(z1, z2) = q1z1 + q2z2,

with q1, q2 > 0, q1 + 2q2 = 1, is a strictly positive valuational functional, since Q is linear

and

Q(α, 2α) = α(q1 + 2q2) = α.

Theorem 2.14 (Fundamental Theorem of Finance). No arbitrage ⇐⇒ there ex-

ists a strictly positive valuation functional.



2.2. VALUATION FUNCTIONAL 35

Proof. “⇐=” Suppose Q is a strictly positive valuation function, then q is a strictly

positive payoff pricing functional, which implies that there is no arbitrage by Theorem

1.32.

“=⇒” Clearly, M is a subspace of RS. (Exercise)

Fixed Ẑ �∈ M, define

N = {Z + λẐ : Z ∈M, λ ∈ R} =M+ span({Ẑ}).

Then N is also a subspace of RS.

If we can find a linear functional Q : N −→ R to be strictly positive, then we can find a

linear functional Q : RS −→ R also to be strictly positive.

Step 1: Definition of Q : N −→ R.

By the assumption of no arbitrage, we have qu(Ẑ) > ql(Ẑ) by Proposition 2.9.

Choose

π ∈
(
ql(Ẑ), qu(Ẑ)

)

and define Q : N −→ R by

Q(Z + λẐ) ≡ q(Z) + λπ. (2.2)

Step 2: Claim: Q : N −→ R is linear.

Let y1, y2 ∈ N , then there exist Z1, Z2 ∈M, λ1, λ2 ∈ R such that

y1 = Z1 + λ1Ẑ and y2 = Z2 + λ2Ẑ.
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Thus, for c ∈ R, by (2.2) we have

Q(cy1 + y2) = Q
(
c
(
Z1 + λ1Ẑ

)
+
(
Z2 + λ2Ẑ

))
= Q

(
(cZ1 + Z2) + (cλ1 + λ2) Ẑ

)
= q ((cZ1 + Z2)) + (cλ1 + λ2) π

= (cq(Z1) + q(Z2)) + (cλ1 + λ2) π

= c
(
q(Z1) + λ1Ẑ

)
+
(
q(Z2) + λ2Ẑ

)
= cQ

(
Z1 + λ1Ẑ

)
+Q

(
Z2 + λ2Ẑ

)
= cQ(y1) +Q(y2).

Step 3: Claim: Q : N −→ R is strictly positive, i.e., for Y ∈ N with Y > 0, we aim to

show that Q(Y ) > 0.

For Y ∈ N and Y > 0, there exists Z ∈M, λ ∈ R such that Y = Z + λẐ > 0.

(1) If λ > 0, then Ẑ > −Z

λ
. Since ql is increasing (Exercise),

ql(Ẑ) ≥ ql

(
−Z

λ

)
= −1

λ
ql(Z) =

Z∈M
−1

λ
q(Z).

Thus,

π > ql(Ẑ) ≥ −1

λ
q(Z).

This implies that

Q(Y ) == Q(Z + λẐ) = q(Z) + λπ > 0.

(2) If λ < 0, similar argument for π ≤ qu(Ẑ). This implies that Q(Y ) > 0.

(3) If λ = 0, Y = Z, thus, Q(Y ) = q(Z) > 0, since q is strictly positive.

Thus, we can get that Q is strictly positive.

�
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Theorem 2.15 (Fundamental Theorem of Finance, Weak Form). No strong arbitrage

⇐⇒ there exists a positive valuation functional.

Proof. Similar argument as in Theorem 2.14. Simply choose π ∈
[
ql(Ẑ), qu(Ẑ)

]
. �

Example 2.16. (1) Suppose P1 = 1, M = span{(1, 2)} and Ẑ = (1, 1), then

N = {Z + λẐ : Z ∈M, λ ∈ R} = R
2.

By Example 2.6(1), we have
1

2
< π < 1. Choose π =

3

4
. Define Q : N (= R

2) −→
R by

Q(Z + λẐ) = q(Z) +
3

4
λ.

For any (y1, y2) ∈ N , we want to find some points Z ∈ M (i.e., Z = (α, 2α) for

some α ∈ R) and λ ∈ R such that

(y1, y2) = Z + λẐ = (α, 2α) + λ(1, 1) = (α + λ, 2α + λ).

Soving the system of equations⎧⎪⎨
⎪⎩

α + λ = y1,

2α + λ = y2,

we have α = y2 − y1 and λ = 2y1 − y2. Due to q(1, 2) = 1, q(α, 2α) = α. This

implies that

Q(y1, y2) = Q((y2 − y1)(1, 2) + (2y1 − y2)(1, 1))

= (y2 − y1)q(1, 2) + (2y1 − y2)π

= (y2 − y1) · 1 + (2y1 − y2) · 3
4
=

1

2
y1 +

1

4
y2.

Thus, this model is arbitrage-free.
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(2) As in Remark 1.36, consider a model with two securities and three states

P =

⎛
⎜⎝ P1

P2

⎞
⎟⎠ =

⎛
⎜⎝ 1

1

⎞
⎟⎠ , X =

⎛
⎜⎝ X1

X2

⎞
⎟⎠ =

⎛
⎜⎝ 2 2 2

1 2 3

⎞
⎟⎠ .

Then its asset span is given by

M = {(x, y,−x+ 2y) : x, y ∈ R}

and the corresponding pricing valuation functional q :M−→ R is of the form

q((x, y,−x+ 2y)) =
1

2
y =

(
0,

1

2

)
· (x, y),

i.e., a = (0, 1/2) ≥ 0. Consider some verctor Ẑ ∈ R
3 \M, e.g., we may choose

Ẑ = (0, 0, 1). Then

qu(Ẑ) = min
h

⎧⎪⎨
⎪⎩P · h :

(
h1 h2

)⎛⎜⎝ 2 2 2

1 2 3

⎞
⎟⎠ ≥ ( 0 0 1

)⎫⎪⎬
⎪⎭

= min
h1.h2

{h1 + h2 : 2h1 + h2 ≥ 0, 2h1 + 2h2 ≥ 0, 2h1 + 3h2 ≥ 1} = 1

4
.

(-1,1)

(-1/4,1/2)

(0,0)

2h1+3h2=1

2h1+2h2=02h1+h2=0

Figure 2.3
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Similarly, we have

ql(1, 1) = min
q1,q2≥0

{q1 + q2 : q1 + 2q2 = 1} = 1

2
.

Similarly, we have ql(Ẑ) = 0. Therefore, 0 < π <
1

4
, we may choose π =

1

8
.

Thus,

Q(x, y, z) = Q ((x, y,−x+ 2y) + (0, 0, z + x− 2y))

= q((x, y,−x+ 2y)) + (z + x− 2y)Q(0, 0, 1) =
1

2
y +

1

8
(z + x− 2y)

=
1

8
x+

1

4
y +

1

8
z =

(
1

8
,
1

4
,
1

8

)
· (x, y, z),

which is strictly positive. Hence, there is no arbitrage in the model.

(3) As in Example 1.37, its payoff pricing functional q is given by

q

((
x, y,−1

3
x− 1

6
y

))
= −x+ 4y.

Consider a contingent claim Ẑ = (0, 0, 1), then

qu(Ẑ) = min
h

⎧⎪⎨
⎪⎩hTP :

(
h1 h2

)⎛⎜⎝ −1 2 0

2 2 −1

⎞
⎟⎠ ≥ ( 0 0 1

)⎫⎪⎬
⎪⎭

= min
h1.h2

{9h1 + 6h2 : −h1 + 2h2 ≥ 0, 2h1 + 2h2 ≥ 0, h2 ≤ 0} = 12

and

ql(Ẑ) = max
h

⎧⎪⎨
⎪⎩hTP :

(
h1 h2

)⎛⎜⎝ −1 2 0

2 2 −1

⎞
⎟⎠ ≤ ( 0 0 1

)⎫⎪⎬
⎪⎭

= max
h1.h2

{9h1 + 6h2 : −h1 + 2h2 ≤ 0, 2h1 + 2h2 ≤ 0, h2 ≥ 0} = 3

(see Figure 2.4). thus, we may choose π ∈ (3, 12), e.g., π = 6.
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(1,-1)

(2,-1)

h1+h2=0

h1+2h2=0

h2=-1

Figure 2.4

Then its valuation functional is of the form

Q(x, y, z) = Q

((
x, y,−1

3
x− 1

6
y

)
+
(
z +

x

3
+

y

6

)
(0, 0, 1)

)

= −x+ 4y + 6
(
z +

x

3
+

y

6

)
= x+ 5y + 6z = (1, 5, 6) · (x, y, z).

This is an alternative method to check that this model is arbitrage-free.

An alternative (and much fast!) method to find an arbitrage free valuation functional

is to combine Example 2.13 and Theorem 2.14. If we want to prove that a model is no

arbitrage, we need to find a strictly positive functional Q, i.e, find a strictly positive vector

a� 0 such that Q(Z) = a · Z, such that Q(Z) = q(Z) for all Z ∈M.

Example 2.17. (1) As in Example 2.13 and Example 2.16 (1), we know the pay-

off pricing functional is given by

q(α, 2α) = α.

We want to know if the model is arbitrage-free. That is, we have to find a strictly

positive valuation functional. By Example 2.13, the valuation functional is of the
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form

Q(z1, z2) = q1z1 + q2z2,

with q1 + 2q2 = 1. Thus, the functional Q is strictly positive if and only if

q1 + 2q2 = 1 with q1, q2 > 0.

(a) We may choose q1 = q2 =
1

3
. Hence,

Q(z1, z2) =
1

3
z1 +

1

3
z2

is a strictly positive valuation functional in this model.

(b) If we choose q1 =
1

2
and q2 =

1

4
, then the corresponding valuation functional

is of the form

Q(z1, z2) =
1

2
z1 +

1

4
z2,

the same as ginve in Example 2.16 (1).

(2) As in Example 1.37 and Example 2.16 (3), its payoff pricing functional q is given

by

q

((
x, y,−1

3
x− 1

6
y

))
= −x+ 4y.

If

Q(x, y, z) = a1x+ a2y + a3z

is a valuation functional, then

Q

((
x, y,−1

3
x− 1

6
y

))
= a1x+ a2y + a3

(
−1

3
x− 1

6
y

)

=

(
a1 − 1

3
a3

)
x+

(
a2 − 1

6
a3

)
y

= q

((
x, y,−1

3
x− 1

6
y

))
= −x+ 4y
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Thus, we want to find a strictly positive soultion to

a1 − 1

3
a3 = −1 and a2 − 1

6
a3 = 4.

We may find (a1, a2, a3) = (1, 5, 6) or (3, 6, 12) are such solutions. This means,

the functional Q given by

x+ 5y + 6z or 3x+ 6y + 12z

is a strictly positive valuation functional.

Corollary 2.18. (1) If there is no arbitrage, the market is complete. ⇐⇒
there exists a unique strictly positive valuation functional.

(2) If there is no strong arbitrage, the market is complete. ⇐⇒ there exists a

unique positive valuation functional.

Proof. Exercise. �

Remark 2.19. (1) If the model is arbitrage free, then Q(Z) = q(Z) = ql(Z) =

qu(Z) for all Z ∈M and Q(Z) ∈ (ql(Z), qu(Z)) for all Z ∈ R
S \M.

(2) If the model is strong arbitrage free, then Q(Z) ∈ [ql(Z), qu(Z)] for all Z ∈ R
S.

Example 2.20. In general, the valuation functional is not unique. For example, as in

Example 2.16(2), if we choose π =
1

6
, then the corresponding valuation functional

Q(x, y, z) =
1

2
y +

1

6
(z + x− 2y) =

1

6
x+

1

6
y +

1

6
z.
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2.3. Exercise

(1) Find qu(Ẑ) and ql(Ẑ) and one valuation functional Q(Z) such that the model is

arbitrage-free in the following cases.

(a) Two states and one security with P1 = 1, X1 = (2, 2). The contingent claim

Ẑ = (2, 1).

(b) Two states and one security with P1 = 1, X1 = (1, 3). The contingent claim

Ẑ = (2, 1).

(c) Three states and one security with P1 = 1, X1 = (1, 2, 3). The contingent

claim Ẑ = (2, 1, 1).

(d) Three states and two securities with P1 = 1, X1 = (2, 2, 2), P2 = 1, X2 =

(3, 1, 4). The contingent claim Ẑ = (1, 2, 3).

(2) Suppose that there are three states and two securities with

P =

⎛
⎜⎝ P1

P2

⎞
⎟⎠ , X =

⎛
⎜⎝ X1

X2

⎞
⎟⎠ =

⎛
⎜⎝ 2 2 2

1 2 3

⎞
⎟⎠ .

(a) Consider Z1 = (4, 2, 1), find qu(Z1) and ql(Z1).

(b) Find a strictly positive valuation functional.

(c) Consider Z2 = (1, 3, 3), find qu(Z2) and ql(Z2).

(d) Discuss the relation of the valuation function constructed in (b) and the

functionals qu(Z2) and ql(Z2) in (c).

(3) Prove that the asset span M is a subspace of RS.

(4) Prove that the functions qu(Z) and ql(Z) are increasing in Z, i.e., for Z1 ≥ Z2,

qu(Z1) ≥ qu(Z2) and ql(Z1) ≥ ql(Z2).

(5) Prove that
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(a) if there is no arbitrage, the market is complete. ⇐⇒ there exists a

unique strictly positive valuation functional.

(b) if there is no strong arbitrage, the market is complete. ⇐⇒ there exists

a unique positive valuation functional.


