
CHAPTER 1

Arbitrage and Pricing

1.1. Security markets

Consider a one period model: t = 0, 1, where

t = 0: now

t = 1: fixed time point in the future (e.g., 1 hour, 1 day, 1 month, 1 year, ...)

Securities are traded at time 0; payoffs are realized at time 1.

time 0 time 1

Figure 1.1. S states, S possible outcomes

Some basic question:

(1) Price at time 1?

(2) How to invest? In other words, we want to study portfolio optimization, e.g.,

suppose there are two assets with prices 100 and 50 at time 0, respectively.
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the wealth at time 0: 100a+ 50b = constant = initial endowment

the wealth at time 1: aX1(w) + bX2(w)
!
=max.

100   50

X1(w) X2(w)

Figure 1.2

In this chapter we aim to find the relation of the prices at time 0 and payoff at time

1,

Suppose that there are J securities in the market: At time 1, the security j with payoff

Xji, Xj2, ..., XjS at each state, where Xjs means the payoff of one share of security j in

state s at time 1.

Denote Xj = (XjiXj2, · · ·XjS) ∈ RS.

Definition 1.1. Let

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1

X2

...

XJ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

X11 X12 · · · X1S

X21 X22 · · · X2S

...
...

. . .
...

XJ1 XJ2 · · · XJS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

be the J × S matrix of payoffs of all securities. X is called the payoff matrix.
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Definition 1.2. A portfolio h is the holding of the J securities. Explicitly,

h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1

h2

...

hJ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ RJ ,

where hj is the holding of security j (hj is a constant, not a random variable).

⎛
⎜⎝ hj > 0 =⇒ buy

hj < 0 =⇒ short sale

⎞
⎟⎠

Definition 1.3. The portfolio payoff

hTX =

(
h1 h2 · · · hJ

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

X11 X12 · · · X1S

X21 X22 · · · X2S

...
...

. . .
...

XJ1 XJ2 · · · XJS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
J∑

i=1

hiXi1,

J∑
i=1

hiXi2, · · · ,
J∑

i=1

hiXiS

)

Moreover,
J∑

i=1

hiXis means the payoff at the state s at time 1.

Example 1.4. Suppose that there are 2 securities with 3 states. The payoff of the

securities is shown in Figure 1.3.

Then the payoff matrix is given by

X =

⎛
⎜⎝ X1

X2

⎞
⎟⎠ =

⎛
⎜⎝ 20 40 60

120 100 80

⎞
⎟⎠ .
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 80 100

20

40

60

120

100

80

Figure 1.3. X1 = (20, 40, 60), X2 = (120, 100, 80)

Suppose h =

⎛
⎜⎝ 2

−1

⎞
⎟⎠, then

hTX =

(
2 −1

)⎛⎜⎝ 20 40 60

120 100 80

⎞
⎟⎠ =

(
−80 −20 40

)
.

Definition 1.5. (1) The asset span is defined by

M = {Z ∈ RS : Z = hTX for some h ∈ RJ} = {hTX : h ∈ RJ}

= span{X1, X2, ..., XJ}.

(The set of payoffs available via trades in security market.)

(2) If M = RS, the market is called complete.

(3) If M �= RS, the market is called incomplete.

Example 1.6. (1) As in Example 1.4, the asset span is given by

M =

⎧⎪⎨
⎪⎩
(

h1 h2

)⎛⎜⎝ 20 40 60

120 100 80

⎞
⎟⎠ : h1, h2 ∈ R

⎫⎪⎬
⎪⎭

= {(20h1 + 120h2, 40h1 + 100h2, 60h1 + 80h2) : h1, h2 ∈ R}

�= R3.
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Thus, the market is incomplete.

(2) Suppose

X1 = (1, 2, 3, 4) and X2 = (1, 1, 1, 1).

Then its payoff matrix

X =

⎛
⎜⎝ 1 2 3 4

1 1 1 1

⎞
⎟⎠

and its asset span is given by

M = span{hTX : h ∈ R2}

=

⎧⎪⎨
⎪⎩
(

h1 h2

)⎛⎜⎝ 1 2 3 4

1 1 1 1

⎞
⎟⎠ : h1, h2 ∈ R

⎫⎪⎬
⎪⎭

= {(h1 + h2, 2h1 + h2, 3h1 + h2, 4h1 + h2) : h1, h2 ∈ R}

= {h1(1, 2, 3, 4) + h2(1, 1, 1, 1) : h1, h2 ∈ R}.

Hence, M �= R4 = RS. Thus, the market is incomplete.

(3) Suppose that J = 4, S = 3 and the payoff at time 1 is given by

X1 = (1, 1, 1), X2 = (1, 2, 3) X3 = (2, 3, 4) X4 = (5, 7, 9).

Then its payoff matrix is given by

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1

X2

X3

X4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1

1 2 3

2 3 4

5 7 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and its asset span

M = span{X1, X2, X3, X4}

= {h1(1, 1, 1) + h2(1, 2, 3) + h3(2, 3, 4) + h4(5, 7, 9) : h1, h2, h3, h4 ∈ R}

= {h1(1, 1, 1) + h2(1, 2, 3) : h1, h2 ∈ R} �= R3.

Hence, the market is incomplete.

Theorem 1.7. A market is complete ⇐⇒ rank(X) = S.

Proof. By definition,

a market is complete

⇐⇒ M = RS.

⇐⇒ for all Z ∈ RS there exists an h ∈ RJ such that Z = hTX.

(∗)⇐⇒ rank(X) = S.

(∗) can be shown below:

“⇐=” Let h = X(XXT )−1ZT , then

hTX = (X(XXT )−1ZT )TX = Z(XTX)−1XTX = Z.

“=⇒” Using the fact rank(X) = dim(range(X)). �

Notation 1.8. The price of securities at time 0 are denoted P = (P1, P2, ..., PJ)
T .

Remark 1.9. The price of portfolio h at security price P is

hT =
J∑

j=1

hjPj.
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Definition 1.10. The (gross) return on security j is denoted by

rj =
Xj

Pj

.

Example 1.11. Suppose that there are 3 states and 2 securities

security 1: price at time 0 is P1 = 0.8 and payoff at time 1 is X1 = (1, 1, 1)

security 2: price at time 0 is P2 = 1.25 and payoff at time 1 is X2 = (1, 2, 2)

 0.8 1.25

1

1

1

1

2

2

Figure 1.4

payoff matrix: X =

⎛
⎜⎝ 1 1 1

1 2 2

⎞
⎟⎠

asset span M =

⎧⎪⎨
⎪⎩
(

h1 h2

)⎛⎜⎝ 1 1 1

1 2 2

⎞
⎟⎠ : h1, h2 ∈ R

⎫⎪⎬
⎪⎭

= {(h1 + h2, h1 + 2h2, h1 + 2h2) : h1, h2 ∈ R}

This implies that dimM=2 (i.e., rank(X) = 2). Therefore, the market is not complete.

The security returns are

r1 =
X1

P1

=
(1, 1, 1)

0.8
= (1.25, 1.25, 1.25),

r2 =
X2

P2

=
(1, 2, 2)

1.25
= (0.8, 1.6, 1.6).
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1.2. Arbitrage and strong arbitrage

Notation 1.12. For x, y ∈ Rn,

x ≥ y ⇐⇒ xi ≥ yi for all i,

x > y ⇐⇒ x ≥ y and x �= y,

x� y ⇐⇒ xi > yi for all i.

y

Figure 1.5. {x : x ≥ y}

y

Figure 1.6. {x : x > y}

The sets {x : x ≥ y}, {x : x > y}, and {x : x� y} are shown in Figures 1.5, 1.6, and

1.7, respectively.
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y

Figure 1.7. {x : x� y}

Definition 1.13. (1) A strong arbitrage is a portfolio h such that

hTX ≥ 0 and hTP < 0.

(2) An arbitrage is a portfolio h such that

hTX ≥ 0 and hTP ≤ 0

with at least one strict inequality.1

Remark 1.14. Clearly, a strong arbitrage is an arbitrage. But there is a portfolio

which can be an arbitrage, but not a strong arbitrage.

Example 1.15. Suppose that there are two securities in the market:

security 1 (bond): P1 = 1, X1 = (1, 1);

security 2 (stock): P2 = 1, X2 = (1, 2).

1Or written as

hTX ≥ 0 and hTP < 0

or

hTX > 0 and hTP ≤ 0.
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Then for h = (−1, 1)T ,

hTP = (−1, 1)

⎛
⎜⎝ 1

1

⎞
⎟⎠ = −1 + 1 = 0.

hTX =

(
−1 1

)⎛⎜⎝ 1 1

1 2

⎞
⎟⎠ =

(
0 1

)
≥ 0

Thus, h is an arbitrage, but not a strong arbitrage.

Definition 1.16. (1) If there exists an arbitrage in a market model, we say that

there exists an arbitrage opportunity in security market.

(2) If there is no arbitrage opportunity in a market model, we say that there is

no arbitrage (arbitrage-free, or no free-lunch) in the model.

(3) Similar definition for strong arbitrage opportunity, no strong arbitrage.

Lemma 1.17. If there does not exist h such that hTX > 0, then there is no arbitrage,

or if we can show that

hTX ≥ 0 =⇒ h = 0,

then there does not exist a strategy h such that hTX > 0.

Proof. Exercise. �

Remark 1.18. No arbitrage implies no strong arbitrage.

Example 1.19. (1) Consider a model with two securities and two states.

security 1 (bond): P1 = 1, X1 = (1, 1);

security 2 (stock): P2 = 1, X2 = (1, 2).
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Then for h = (1,−1)T ,

hTP = (−1, 1)

⎛
⎜⎝ 1

1

⎞
⎟⎠ = 0,

hTX = (−1, 1)

⎛
⎜⎝ 1/2 2

1/3 3/2

⎞
⎟⎠ =

(
1

6
,
1

2

)
� 0.

Hence, h is a strong arbitrage.

(2) Suppose that the securities have the payoffs

X1 = (−1, 2, 0), X2 = (2, 2,−1).

A portfolio h = (h1, h2)
T has a positive payoff

hTX =

(
h1 h2

)⎛⎜⎝ −1 2 0

2 2 −1

⎞
⎟⎠ ≥ 0,

i.e.,

(−h1 + 2h2, 2h1 + 2h2, −h2) ≥ 0.

Thus, we have to solve the system of linear equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−h1 + 2h2 ≥ 0

2h1 + 2h2 ≥ 0

−h2 ≥ 0

Hence, we get that

h2 ≥ 1

2
h1 (1.1)

h1 + h2 ≥ 0 (1.2)

h2 ≤ 0 (1.3)
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Due to (1.1) and (1.3), we have

h1 ≤ 0, h2 ≤ 0. (1.4)

Hence,

h1 + h2 ≤ 0.

Together with (1.2), we get

h1 + h2 = 0.

By (1.4) this results

h1 = h2 = 0,

i.e,,

h = 0.

Thus, there is no arbitrage in this model.

1.3. Positivity and the payoff pricing functional

1.3.1. The payoff pricing functional.

Definition 1.20 (The law of one price). All portfolios with the same payoff have the

same price, i.e., if h, k are portfolios, then

hTX = kTX =⇒ hTP = kTP.

Proposition 1.21. No strong arbitrage =⇒ the law of one price holds.
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Proof. Suppose the law of one price does not hold. Then there exist two portfolios

h and k such that

hTX = kTX, but hTP > kTP.

Let l = k − h, then

lTX = kTX − hTX = 0,

lTP = kTP − hTP < 0.

This implies that l is a strong arbitrage. �

Remark 1.22. The converse of Proposition 1.21 does not hold. For example, consider

a model with two securities and two states. Suppose that the price at time 0: P =

(P1, P2)
T = (1/4, 1)T and the payoff at time 1: X1 = (1, 1), X2 = (2, 3), i.e., the payoff

matrix is given by

X =

⎛
⎜⎝ X1

X2

⎞
⎟⎠ =

⎛
⎜⎝ 1 1

2 3

⎞
⎟⎠ .

Assume that hTX = kTX. Since X is invertible, h = k. Thus,

hTP = kTP.

This implies that the law of one price holds. However, h = (4,−1)T is a strong arbitrage,

since

hTP = (4,−1)

⎛
⎜⎝ 1/4

1

⎞
⎟⎠ = 0,

hTX = (4,−1)

⎛
⎜⎝ 1 1

2 3

⎞
⎟⎠ = (2, 1)� 0.

Remark 1.23. The law of one price holds ⇐⇒ Every portfolio with zero payoff

has zero price.
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Definition 1.24. Define q : M → R that assigns to each payoff the price of the

portfolio that generates the payoff, i.e.,

q(Z) = {w : w = hTP for some h such that Z = hTX}.

If the law of one price holds, we call q the payoff pricing functional (i.e., q is well-defined).

Example 1.25. (1) Consider a financial market with 3 securities and 3 states.

Let P = (P1, P2, P3)
T = (1, 1, 1)T and the payoff matrix

X =

⎛
⎜⎜⎜⎜⎝

X1

X2

X3

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 1 1

2 1 1/2

1/2 1 2

⎞
⎟⎟⎟⎟⎠ .

For Z = (9, 7, 9), since Z = hTX, then the corrspondng portfolio h satisifes

(9, 7, 9) = (h1, h2, h3)

⎛
⎜⎜⎜⎜⎝

1 1 1

2 1 1/2

1/2 1 2

⎞
⎟⎟⎟⎟⎠ .

This imples that

(h1, h2, h3) = (9, 7, 9)

⎛
⎜⎜⎜⎜⎝

1 1 1

2 1 1/2

1/2 1 2

⎞
⎟⎟⎟⎟⎠

−1

= (9, 7, 9)(−4

3
)

⎛
⎜⎜⎜⎜⎝

3/2 −1 −1/2
−15/4 3/2 3/2

3/2 −1/2 −1

⎞
⎟⎟⎟⎟⎠

= (−1, 4, 4).
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Hence, the corresponding portfolio h =

⎛
⎜⎜⎜⎜⎝
−1
4

4

⎞
⎟⎟⎟⎟⎠. Thus,

q(9, 7, 9) = hTP = (−1, 4, 4)

⎛
⎜⎜⎜⎜⎝

1

1

1

⎞
⎟⎟⎟⎟⎠ = 7.

More general, for Z = (Z1, Z2, Z3), the corresponding portfolio

h = (Z1, Z2, Z3)X
−1 =

(
−2Z1 + 5Z2 − 2Z3,

4

3
Z1 − 2Z2 +

2

3
Z3,

2

3
Z1 − 2Z2 +

4

3
Z3

)
.

Thus, the payoff pricing functional is of the form

q(Z) = q(hTX) = hTP

=

(
−2Z1 + 5Z2 − 2Z3,

4

3
Z1 − 2Z2 +

2

3
Z3,

2

3
Z1 − 2Z2 +

4

3
Z3

)
⎛
⎜⎜⎜⎜⎝

1

1

1

⎞
⎟⎟⎟⎟⎠

= (−2Z1 + 5Z2 − 2Z3) +

(
4

3
Z1 − 2Z2 +

2

3
Z3

)
+

(
2

3
Z1 − 2Z2 +

4

3
Z3

)

= Z2.

(2) Consider a financial market with 2 securities and 3 states.

price P =

⎛
⎜⎝ P1

P2

⎞
⎟⎠ =

⎛
⎜⎝ 1

3/2

⎞
⎟⎠

payoff matrix X =

⎛
⎜⎝ X1

X2

⎞
⎟⎠ =

⎛
⎜⎝ 1 2 1

2 2 2

⎞
⎟⎠ .
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Then the asset span

M = {h1(1, 2, 1) + h2(2, 2, 2) : h1, h2 ∈ R}

= {(h1 + 2h2, 2h1 + 2h2, h1 + 2h2) : h1, h2 ∈ R}

= {(x, y, x) : x, y ∈ R}.

Hence,

q((x, y, x)) = q
(
(y − x)(1, 2, 1) +

(
x− y

2

)
(2, 2, 2)

)
= (y − x) · 1 +

(
x− y

2

)
· 3
2
=

x

2
+

y

4
.

(3) Consider a financial market with 2 securities and 3 states. Let

P =

⎛
⎜⎝ P1

P2

⎞
⎟⎠ =

⎛
⎜⎝ 1

1

⎞
⎟⎠

X =

⎛
⎜⎝ X1

X2

⎞
⎟⎠ =

⎛
⎜⎝ 1 1 1

2 3 4

⎞
⎟⎠ .

Then the asset span

M = {h1(1, 1, 1) + h2(2, 3, 4) : h1, h2 ∈ R}

= {(h1 + 2h2, h1 + 3h2, h1 + 4h2) : h1, h2 ∈ R}

= {(x, y,−x+ 2y) : x, y ∈ R}.

Hence,

q((x, y,−x+ 2y)) = q ((3x− 2y)(1, 1, 1) + (−x+ y) (2, 3, 4))

= (3x− 2y) · 1 + (−x+ y) · 1 = 2x− y.

Theorem 1.26. q is a payoff pricing functional ⇐⇒ q :M→ R is linear.
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Proof. ”=⇒” If q is a payoff pricing functional, then the law of one price holds, i.e.,

“hTX = kTX =⇒ hTP = kTP”. (1.5)

Consider q(cZ1 + Z2) = w. Then there exists a portfolio h such that w = hTP and

cZ1 + Z2 = hTX.

Let q(Z1) = w1, q(Z2) = w2, then⎧⎪⎨
⎪⎩

there exists h1 such that w1 = hT
1 P and Z1 = hT

1X,

there exists h2 such that w2 = hT
2 P and Z2 = hT

2X.

Hence,

hTX = cZ1 + Z2 = chT
1X + hT

2X = (ch1 + h2)
TX.

By (1.5), we have

w = hTP = (ch1 + h2)
TP = chT

1 P + hT
2 P = cw1 + w2

=⇒ q(cZ1 + Z2) = w = cw1 + w2 = cq(Z1) + q(Z2)

=⇒ q is linear.

”⇐=” Suppose that q :M −→ R is linear, then q is a functional. This implies that q is

well-defined. Hence, the law of one price holds. �

1.3.2. Positivity of functional.

Definition 1.27. Let L be a vector subspace of Rn and let F : L −→ R is a functional.

(1) F is said to be positive on L if F (x) ≥ 0, for all x ∈ L with x ≥ 0.

(2) F is strictly positive on L if F (x) > 0, for all x ∈ L with x > 0.
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Remark 1.28. If F is a (strictly) positive functional on Rn, we say that F is a (strictly)

positive functional.

Example 1.29. (1) Define F (x1, x2) = x2. Then F is positive, but F is not

strictly positive (since F (0, 1) = 0).

(2) The function F (x1, x2) = x1 + x2 is strictly positive.

Remark 1.30. If L = Rn, i.e., F is a linear functional, then there exists a vector

a ∈ Rn such that F (x) = a · x for x ∈ Rn, i.e.,

F (x1, x2, ..., xn) = a1x1 + a2x2 + ...+ anxn.

Remark 1.31. If F (x) = a · x for a ∈ Rn. Then

(1) F is positive ⇐⇒ a ≥ 0.

(2) F is strictly positive ⇐⇒ a� 0.

But this result does not hold if the domain of F is not Rn, but its proper subspace. For

example, let

L = {(x, y,−x− y) : x, y ∈ R},

which is a proper subspace of R3, the function

F (x, y,−x− y) = −x+ y = (−1, 1) · (x, y)

is a strictly positive functional on L, but is not of the form given above.

Theorem 1.32. Suppose the market is complete, i.e., M = RS.

(1) The payoff pricing functional q is linear and strictly positive ⇐⇒ There is

“no arbitrage”.
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(2) The payoff pricing functional is linear and positive. ⇐⇒ There is no strong

arbitrage.

Proof. (1) “=⇒” Suppose that q is linear and strictly positive. Then there

exists a ∈ RS such that q(Z) = a · Z for some a� 0.

Claim that the model is arbitrage-free, i.e., there exists a portfoloe h such that

“ if hTX > 0 =⇒ hTP ≤ 0” and “‘ if hTX = 0 =⇒ hTP = 0”.

(i) Suppose that Z = hTX > 0. Since q is strictly positive,

hTP = q(hTX) = q(Z) > 0.

(ii) Suppose that Z = hTX = 0. Since q is linear,

hTP = q(hTX) = q(Z) = 0.

By (i) and (ii) we know that there is no arbitrage in this market.

“⇐=” Suppose there is no arbitrage.

(i) Claim that q is linear.

Assume that the law of one price fails, i.e., there exist portfolios h and

k ∈ RJ such that hTX = kTX but hTP �= kTP . Without loss of generality,

we may assume hTP < kTP . Consider a portfolio m = h− k, then

mTX = (h− k)TX = hTX − kTX = 0

mTP = (h− k)TP = hTP − kTP < 0.

Thus, m is an arbitrage which leads to a contradiction. This implies that

the law of one price holds. By Theorem 1.26 we know that q is linear.
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(ii) Claim that q is strictly positive.

For Z ∈M, there exists h ∈ RJ such that q(z) = hTP with Z = hTX. Due

to the assumption of “no arbitrage”, we have

if Z = hTX > 0 =⇒ q(Z) = hTP > 0

and

if Z = hTX = 0 =⇒ q(Z) = hTP = 0.

Thus, q is strictly positive.

(2) Exercise

�

Corollary 1.33. Suppose that the market is incomplete, i.e., M � RS. Then the

results of Theorem 1.32 still holds, i.e.,

(1) The payoff pricing functional q is linear and strictly positive on M ⇐⇒
There is “no arbitrage” in the model.

(2) The payoff pricing functional is linear and positive on M ⇐⇒ There is no

strong arbitrage in the model.

Remark 1.34. Suppose the model is not complete, then without loss of generality, we

assume that

M = {(y1, ..., yn, gn+1(y1, ..., yn), gS(y1, ..., yn)) : y1, ..., yn ∈ R}

= {(y, gn+1(y), ..., gS(y)) : y ∈ Rn} � RS, (1.6)

where gn+1, ..., gS are linear functional of y1, ...yn. Due to Remark 1.31 we know that a

positive linear functional onM is not necessary to be of the form a ·x for all x ∈M with
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a ≥ 0. However, a linear functional F :M−→ R of the form

F ((y, gn+1(y), ..., gS(y))) = a · y for all y ∈ Rn

with a positive vector a ∈ Rn does imply that F is a positive linear functional on M.

Thus, we have the following corollary.

Corollary 1.35. Suppose the market is incomplete and the asset span M is of the

form (1.6).

(1) If there exists a strictly positive vector a ∈ Rn such that

q((y, gn+1(y), ..., gS(y))) = a · y for all y ∈ Rn,

then there is no arbitrage in the model.

(2) If there exists a positive vector a ∈ Rn such that

q((y, gn+1(y), ..., gS(y))) = a · y for all y ∈ Rn,

then there is no strong arbitrage in the model.

Remark 1.36. The inverse direction of Corollary 1.35 does not hold. For example,

consider a model with two securities and three states

P = (P1, P2) = (1, 1), X =

⎛
⎜⎝ X1

X2

⎞
⎟⎠ =

⎛
⎜⎝ 2 2 2

1 2 3

⎞
⎟⎠ .

Then its asset span is given by

M = span{(2, 2, 2), (1, 2, 3)} = {(x, y,−x+ 2y) : x, y ∈ R}
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and the corresponding pricing valuation functional q :M−→ R is of the form

q((x, y,−x+ 2y)) = q

(
1

2
(2x− y)(2, 2, 2) + (y − x)(1, 2, 3)

)

=
1

2
(2x− y) · 1 + (y − x) · 1 =

1

2
y =

(
0,

1

2

)
· (x, y),

i.e., a = (0, 1/2) ≥ 0. Thus, there is no strong arbitrage in the model. However, from

Corollary 1.35 we cannot conclude that the model is arbitrage-free or not. Using Corollary

1.33 (1) we know that if we can show that q(x, y,−x+2y) > 0 for all (x, y,−x+2y) > 0,

we can get the model is no arbitrage. (x, y,−x + 2y) > 0 means that x ≥ 0, y ≥ 0,

−x+ 2y ≥ 0 ad with at least one strict inequality. However, if y = 0,

0 ≤ x ≤ 2y = 0

which leads to a contradiction. Thus, y > 0. Moreover, by q((x, y,−x+ 2y)) =
y

2
we can

see that

q((x, y,−x+ 2y)) > 0 if (x, y,−x+ 2y) > 0.

In fact, in the next chapter, we shall introduce anther method to show that this model is

arbitrage-free.

Example 1.37. (1) As in Example 1.25 (1)

q((Z1, Z2, Z3)) = Z2 = (0, 1, 0) · (Z1, Z2, Z3),

i.e., a = (0, 1, 0) ≥ 0. Since the market is complete, by Theorem 1.32 there is no

strong arbitrage, but there exists an arbitrage opportunity in the model. In fact,

we can find the portfolio h = (−2, 1, 1)T as an arbitrage opportunity.

(2) As in Example 1.25 (2)

q((x, y, x)) =
x

2
+

y

4
=

(
1

2
,
1

4

)
· (x, y),
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i.e., a =

(
1

2
,
1

4

)
� 0. Thus, there is no arbitrage.

(3) As in Example 1.25 (3)

q((x, y,−x+ 2y)) = 2x− y = (2,−1) · (x, y),

i.e., a = (2,−1). Indeed, there is a strong arbitrage opportunity (and an arbitrage

opportunity). However, from the fact a = (2,−1) we cannot conclude that this

model is not arbitrage-free.

(4) Consider a market model with two securities and three states. Let P = (P1, P2)
T =

(9, 6)T , and the payoff matrix is of the form

X =

⎛
⎜⎝ X1

X2

⎞
⎟⎠ =

⎛
⎜⎝ −1 2 0

2 2 −1

⎞
⎟⎠ .

Then its asset span is given by

M = span{(−1, 2, 0), (2, 2,−1)} =
{(

x, y,−1

3
x− 1

6
y

)
: x, y ∈ R

}

and its pricing payoff functional is of the form

q

((
x, y,−1

3
x− 1

6
y

))
= q

(
1

3
(y − x)(−1, 2− 0) +

(
1

3
x+

1

6
y

)
(2, 2,−1)

)

=
1

3
(y − x)q(−1, 2− 0) +

(
1

3
x+

1

6
y

)
q(2, 2,−1)

=
1

3
(y − x) · 9 +

(
1

3
x+

1

6
y

)
· 6 = −x+ 4y

= (−1, 4) · (x, y).

Thus, the corresponding a = (−1, 4). However, we have shown in Example 1.19

that this model is arbitrage-free.

Remark 1.38. Suppose q is a payoff pricing functional, then q(Xj) = Pj for all j.
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Proof. Let

q(Xj) = {w : w = hTP for some h such that Xj = hTX}.

We aim to choose a portfolio h ∈ RJ satisfying Xj = hTX.

Since ej = (0, · · · , 0, 1, 0, · · · , 0)T satisfies

eTj X = (0, · · · , 0, 1, 0, · · · , 0)

⎛
⎜⎜⎜⎜⎝

X1

...

XJ

⎞
⎟⎟⎟⎟⎠ = Xj,

we may take h = ej. This implies hTX = eTj X. By the law of one price, we have

hTP = eTj P = Pj. This means

q(Xj) = Pj for all 1 ≤ j ≤ J.

�

1.4. Exercise

(1) Find the payoff matrix, asset span and security returns of the following market

model. Furthermore, determine if the market is complete.

(a) P = (P1, P2)
T = (1, 1)T ; X1 = (1.2, 1.2, 1.2), X2 = (1, 1.2, 2).

(b) P = (P1, P2, P3)
T = (1, 1, 1)T ; X1 = (1.2, 1.2, 1.2), X2 = (0.8, 1, 1.2), X3 =

(0.9, 1.1, 1.3).

(c) P = (P1, P2, P3, P4)
T = (1, 1, 1, 1)T ; X1 = (1, 1, 1), X2 = (0.8, 1.2, 1.2),

X3 = (0.8, 0.8, 1.2), X4 = (0.5, 2, 4).

(2) Determine if there exists arbitrage opportunity in the following model. If yes,

find an arbitrage.

(a) P = (P1, P2)
T = (1, 1)T ; X1 = (1, 1), X2 = (0.8, 2).
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(b) P = (P1, P2)
T = (1, 1)T ; X1 = (1.2, 1.2, 1.2), X2 = (1.1, 2, 2).

(c) P = (P1, P2)
T = (1, 1)T ; X1 = (1.2, 1.2, 1.2), X2 = (1.2, 2, 2).

(d) X1 = (1,−1, 1,−1), X2 = (−1, 1, 1,−1).
(3) Determine if the law of one price holds. If yes, find the corresponding payoff

pricing function.

(a) P = (P1, P2)
T = (1, 1)T ; X1 = (1.2, 1.2, 1.2), X2 = (0.8, 1, 1.2).

(b) P = (P1, P2, P3)
T = (1, 1, 1)T ; X1 = (1, 1, 1), X2 = (0.8, 1, 1.2), X3 =

(1.2, 1, 0.8).

(4) Determine if the following functionals are positive or strictly positive.

(a) F (x1, x2) = x2
1 + x3

2;

(b) F (x1, x2, x3) = x2
1 + x2

2 + x2
3;

(c) F (x1, x2, x3) = x2
1 + x2

2 + x3;

(d) F (x1, x2, x3) = 2x1 + x2 + 4x3;

(e) F (x1, x2, x3) = 2x1 − x2 + 4x3;

(f) F (x1, x2, x3) = 2x1 + x2
3.

(5) Find the payoff pricing functionals in the following cases. Using these functionals

to check if the models are arbitrage-free or strong arbitrage-free.

(a) (12 points) P = (P1, P2)
T = (1, 1)T ; X1 = (2, 2, 2), X2 = (3, 4, 5).

(b) (12 points) P = (P1, P2, P3)
T = (1, 1, 1)T ; X1 = (1, 1, 1), X2 = (1, 2, 2),

X3 = (2, 1, 2).

(6) Let h ∈ RJ and X be a J × S matrix. Prove that if “hTX ≥ 0 implies h = 0”,

then there does not exist a vector h ∈ RJ such that hTX > 0.

(7) Prove that the law of one price holds if and only if every portfolio with zero profit

has zero price.
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(8) Prove that the payoff pricing functional is linear and positive if and only if there

is no strong arbitrage.


