
CHAPTER 3

State Prices and Risk-Neutral Probabilities

3.1. State prices

Let Q : RS → R be a valuation functional and let (es)1≤s≤S be the standard ordered

basis for RS, i.e., ei = (0, ..., 0, 1, 0, ..., 0), where 1 is at the i-th position.

Definition 3.1. Define qs = Q(es) to be the state price of state s. If M = R
S

(complete market), then

qi = Q(ei) = q(ei) = {hTP : h satisfies hTX = ei}.

Remark 3.2. (1) If Q is strictly positive, then each state price qi is strictly pos-

itive.

(2) If Q is positive, then each state price qi is positive.

Example 3.3. (1) As in Example 2.16 (1),

Q(y1, y2) =
1

2
y1 +

1

4
y2.

Thus, the state prices are given by

q1 = Q(1, 0) =
1

2
, q2 = Q(0, 1) =

1

4
.

(2) As in Example 2.16 (2),

Q(x, y, z) =
1

8
x+

1

4
y +

1

8
z.
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Thus, the state prices are given by

q1 = Q(1, 0, 0) =
1

8
, q2 = Q(0, 1, 0) =

1

4
, q3 = Q(0, 0, 1) =

1

8
.

Remark 3.4. For Z ∈ R
S, we have

Z =
S∑

s=1

Zses.

The representation

Q(Z) = Q

(
S∑

i=1

Ziei

)
=

S∑
i=1

ZiQ(ei) =
S∑

i=1

Ziqi = q̄ · Z,

with q̄ = (q1, ..., qS), is called the state-price representation of the valuation functional Q.

Remark 3.5. Due to Q(Z) = q̄ · Z, we see that

Pj = Q(Xj) = q̄ ·Xj = Xj q̄
T .

This implies that

P = Xq̄T . (3.1)

Theorem 3.6. There exists a strictly positive valuation functional ⇐⇒ there

exists a strictly positive solution q̄ to the equation (3.1). Each strictly positive solution q

defines a strictly positive valuation functional Q such that Q(Z) = q · Z, for all Z ∈ R
S.

Proof. “=⇒ Shown above! (q̄ = (q1, ..., qS))

“⇐=” If q̄ is a strictly positive solution to (3.1). Define

Q(Z) = q̄ · Z.

Then Q is linear and strictly positive.

It remains to show that

Q(Z) = the payoff pricing function q(Z) for all Z ∈M.
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For Z ∈M, there exists a portfolio h such that Z = hTX, then

Q(Z) = q̄ · Z = Zq̄T = hTXq̄T = hTP = q(Z).

�

Corollary 3.7. No arbitrage ⇐⇒ there exists a vector q̄ ∈ R
S such that

P = Xq̄T and q̄ � 0.

Proof. Exercise. �

Theorem 3.8. The following statements are equivalent:

(1) There exists a positive valuation functional.

(2) No strong arbitrage.

(3) There exists a vector q̄ ∈ R
S such that

P = Xq̄T and q̄ ≥ 0.

Proof. Exercise. �

Example 3.9. (1) There are two securities in the market.

security 1 (bond): P1 = 1, X1 = (1, 1);

security 2 (stock): P2 = 1, X2 = (1, 2).

Solve the equation ⎛
⎜⎝ P1

P2

⎞
⎟⎠ =

⎛
⎜⎝ X1

X2

⎞
⎟⎠
⎛
⎜⎝ q1

q2

⎞
⎟⎠ ,

i.e., ⎛
⎜⎝ 1

1

⎞
⎟⎠ =

⎛
⎜⎝ 1 1

1 2

⎞
⎟⎠
⎛
⎜⎝ q1

q2

⎞
⎟⎠ .
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Thus,

q̄ =

⎛
⎜⎝ q1

q2

⎞
⎟⎠ =

⎛
⎜⎝ 1 1

1 2

⎞
⎟⎠
−1⎛
⎜⎝ 1

1

⎞
⎟⎠ =

⎛
⎜⎝ 2 −1
−1 1

⎞
⎟⎠
⎛
⎜⎝ 1

1

⎞
⎟⎠ =

⎛
⎜⎝ 1

0

⎞
⎟⎠ .

This is no strong arbitrage, but there is an arbitrage opportunity.

(2) There are two securities with 3 states in the market.

security 1 (bond): P1 = 1/2, X1 = (1, 1, 1);

security 2 (stock): P2 = 1, X2 = (1, 2, 4).

Positive state prices q1, q2, q3 are positive solutions to

⎛
⎜⎝ P1

P2

⎞
⎟⎠ =

⎛
⎜⎝ X1

X2

⎞
⎟⎠
⎛
⎜⎜⎜⎜⎝

q1

q2

q3

⎞
⎟⎟⎟⎟⎠ ,

i.e.,

⎛
⎜⎝ 1/2

1

⎞
⎟⎠ =

⎛
⎜⎝ 1 1 1

1 2 4

⎞
⎟⎠
⎛
⎜⎜⎜⎜⎝

q1

q2

q3

⎞
⎟⎟⎟⎟⎠ .

Thus, ⎧⎪⎨
⎪⎩

q1 + q2 + q3 =
1

2
,

q1 + 2q2 + 4q3 = 1,

whose solution is

q1 = 2q3, q2 =
1

2
− 3q3.

(i) For positive state prices: q1, q2, q3 ≥ 0 =⇒ 0 ≤ q3 ≤ 1

6
.

Thus, there exists a positive solution to Equation (3.1), i.e., this model is

strong arbitrage free.
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(ii) For state prices: strictly positive =⇒ q1, q2, q3 > 0 =⇒ 0 < q3 <
1

6
.

Thus, there exists a strictly positive solution to Equation (3.1), i.e., this

model is no arbitrage.

(3) There are two securities in the market.

security 1 (bond): P1 = 1, X1 = (1, 1, 1);

security 2 (stock): P2 = 1, X2 = (1, 2, 4).

Positive state prices q1, q2, q3 are positive solutions to

⎛
⎜⎝ P1

P2

⎞
⎟⎠ =

⎛
⎜⎝ X1

X2

⎞
⎟⎠
⎛
⎜⎜⎜⎜⎝

q1

q2

q3

⎞
⎟⎟⎟⎟⎠ ,

i.e., ⎛
⎜⎝ 1

1

⎞
⎟⎠ =

⎛
⎜⎝ 1 1 1

1 2 4

⎞
⎟⎠
⎛
⎜⎜⎜⎜⎝

q1

q2

q3

⎞
⎟⎟⎟⎟⎠ .

Thus, ⎧⎪⎨
⎪⎩

q1 + q2 + q3 = 1,

q1 + 2q2 + 4q3 = 1,

whose solution is

q1 = 1 + 2q3, q2 = −3q3.

Thus,

(i) Since this system of equations has no strictly positive solution (there is no

q2 and q3 such that q2, q3 > 0), this means that this model has an arbitrage

opportunity.

(ii) There is one positive solution q̄ = (q1, q2, q3) = (1, 0, 0), hence there is no

strong arbitrage in this model.
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3.2. State prices and value bounds

Proposition 3.10. No arbitrage =⇒

qu(Z) = max
q̄≥0
{q̄ · Z : P = Xq̄T},

ql(Z) = min
q̄≥0
{q̄ · Z : P = Xq̄T}.

Proof. Step 1: Let

q̂u(Z) = max
q̄≥0
{q̄ · Z : P = Xq̄T}.

For h ∈ R
J satisfying hTX ≥ Z, we have

hTXq̄T ≥ Zq̄T for q̄ satisfying P = Xq̄T and q̄ ≥ 0.

Thus,

hTP ≥ q̄ · Z

for all trading strategy h satisfying hTX ≥ Z. Taking minimum on the left-hand

side over all h satisfying hTX ≥ Z, we get that qu(Z) ≥ q̄ · Z for all q̄ satisfying

P = Xq̄T and q̄ ≥ 0. Hence, qu(Z) ≥ q̂u(Z).

Step 2: Due to the proof of Theorem 2.14, there exists a valuation functional Q such that

Q(Z) = qu(Z). Thus, qu(Z) is the least upper bound for the valuation functional.

Hence, qu(Z) ≤ q̂u(Z) due to the definition of q̂u(Z).

By Step 1 and Step 2, we have qu(Z) = q̂u(Z). Similar argument for ql(Z). �

Example 3.11. (1) There is one security with 2 states in the market. Security

P1 = 1, X1 = (1, 2). Consider the contingent claim Z = (1, 1).

qu(1, 1) = max
q̄≥0
{q̄ · (1, 1) : P = Xq̄T}

= max
q1,q2≥0

{q1 + q2 : q1 + 2q2 = 1}.
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It is easy to get that qu(1, 1) = 1 (See Figure 3.1).

(0,1/2)

(1,0)
q1+2q2=1q1+q2=1

Figure 3.1

Similarly, we have

ql(1, 1) = min
q1,q2≥0

{q1 + q2 : q1 + 2q2 = 1} = 1

2
.

(2) There is one security with 3 states in the market with

P1 = 1 X1 = (1, 2, 2).

For contingent claim Z = (1, 1, 1), find qu(Z) and ql(Z).

qu(1, 1, 1) = max
q̄≥0
{q̄ · (1, 1, 1) : P = Xq̄T}

= max
q1,q2,q3≥0

{q1 + q2 + q3 : q1 + 2q2 + 2q3 = 1}.

Thus, we have

q1 = 1− 2q2 − 2q3 ≥ 0, q2 ≥ 0, q3 ≥ 0.

This implies that we aim to solve

max(1− q2 − q3)
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subject to the constraints

q2 + q3 ≤ 1

2
, q2 ≥ 0, q3 ≥ 0.

This implies that qu(Z) = 1. Similarly, we have

ql(Z) = min
q1,q2,q3≥0

{q1 + q2 + q3 : q1 + 2q2 + 2q3 = 1} = 1

2
.

(3) There are two securities with 3 states in the market.

Security 1: P1 =
1

2
, X1 = (1, 1, 1),

Security 2: P2 = 1, X2 = (1, 2, 4).

For Z = (0, 0, 1), find qu(Z) and ql(Z).

qu(Z) = max
q̄≥0
{q̄ · Z : P = Xq̄T}

= max
q1,q2,q3≥0

{
q3 : q1 + q2 + q3 =

1

2
, q1 + 2q2 + 4q3 = 1

}
.

Solving the system of equations⎧⎪⎨
⎪⎩

q1 + q2 + q3 =
1

2
,

q1 + 2q2 + 4q3 = 1,

we get

q1 = 2q3 ≥ 0 and q2 =
1

2
− 3q3.

Thus, 0 ≤ q3 ≤ 1

6
. Hence

qu(Z) =
1

6
and the corresponding q̄ =

(
1

3
, 0,

1

6

)

ql(Z) = 0 and the corresponding q̄ =

(
1

2
,
1

2
, 0

)
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3.3. Risk-neutral probabilities

Assumption. There is no arbitrage in the market.

Definition 3.12. A contingent claim that does not depend on the state is risk-free.

We denote the risk-free return by r̄(∈ R).

Example 3.13. A model with two securities:

Security 1: P1 = 1, X1 = (2, 2, 2),

Security 2: P2 = 1, X2 = (1, 2, 4).

Then its risk-free return r̄ = 2.

Remark 3.14. No arbitrage =⇒ the risk-free return r̄ is unique.

Lemma 3.15. If there is no arbitrage and a nonzero risk-free payoff in the asset span

M, then

r̄ =
1

S∑
s=1

qs

.

Proof. Since the risk-free return = r̄, if the price if risk-free asset at time 0 is P , the

payoff at time 1 is equal to (P r̄, ..., P r̄). Hence the valuation functional

P = Q(P r̄, ..., P r̄) = Q

(
S∑

s=1

P r̄es

)
=

S∑
s=1

P r̄Q(es)

=
S∑

s=1

P r̄qs = P r̄

S∑
s=1

qs.

Thus,

r̄ =
1

S∑
s=1

qs

.

�
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Remark 3.16. (1) Note that Lemma 3.15 holds if (1, 1, ..., 1) in the asset span

M, otherwise, the risk-free return may not be unique.

(2) Suppose Q(Z) = q̄ · Z, then

Q(1, 1, ..., 1) =
S∑

s=1

qs =
1

r̄
.

Example 3.17. (1) A model with two securities

Security 1: P1 = 1, X1 = (1, 2, 3),

Security 2: P2 = 2, X2 = (5, 4, 3).

Then (1, 1, 1) ∈M. Consider the equation

⎛
⎜⎝ 1

2

⎞
⎟⎠ =

⎛
⎜⎝ 1 2 3

5 4 3

⎞
⎟⎠
⎛
⎜⎜⎜⎜⎝

q1

q2

q3

⎞
⎟⎟⎟⎟⎠ ,

i.e., we aim to solve the system of equations

⎧⎪⎨
⎪⎩

q1 + 2q2 + 3q3 = 1,

5q1 + 4q2 + 3q3 = 2,

Summing these two equations, we get

q1 + q2 + q3 =
1

2
.

This implies that r̄ =
1

S∑
s=1

qs

= 2.

(2) A model with two securities

Security 1: P1 = 1, X1 = (1, 2, 3),

Security 2: P2 = 2, X2 = (8, 4, 2).
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Then (1, 1, 1) 	∈ M. Consider the equation

⎛
⎜⎝ 1

2

⎞
⎟⎠ =

⎛
⎜⎝ 1 2 3

8 4 2

⎞
⎟⎠
⎛
⎜⎜⎜⎜⎝

q1

q2

q3

⎞
⎟⎟⎟⎟⎠ , (3.2)

i.e., we aim to solve the system of equations⎧⎪⎨
⎪⎩

q1 + 2q2 + 3q3 = 1,

8q1 + 4q2 + 2q3 = 2.

Thus, the collection of all strictly positive solutions to (3.2) is given by

{
(q1, q2, q3) : q1 =

2

3
q3, q2 =

1

2
− 11

6
q3, 0 < q3 <

3

11

}
.

Hence,

q1 + q2 + q3 =
1

2
− 1

6
q3,

which is not unique. In fact, since

5

11
< q1 + q2 + q3 <

1

2
,

we get that the range of the possible risk-free return is 2 < r̄ <
11

5
in an arbitrage-

free model.

Definition 3.18. Let q̄ be strictly positive state price vector. Define

π∗i =
qi

S∑
k=1

qk

for all 1 ≤ i ≤ S.

We call π∗ = (π∗1, π
∗
2, ..., π

∗
S) the risk-neutral probability (π∗s > 0,

∑
i

π∗i = 1).
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Notation 3.19. Let E
∗ denote the expectation with respect to the probability π∗,

then

E
∗[Z] =

S∑
i=1

Ziπ
∗
i

for contingent claim Z = (Z1, ..., ZS).

Remark 3.20. Since

E
∗[Z] =

S∑
i=1

Ziπ
∗
i =

S∑
i=1

Zi
qi

S∑
k=1

qk

= r̄

S∑
i=1

Ziqi = r̄q̄ · Z

This implies that

Q(Z) = q̄ · Z =
1

r̄
E
∗[Z]

Thus, the value of each contingent claim = the discounted expectation of the claim with

respect to the risk-neutral probabilities. i.e.,

Q(Z) =
1

r̄
E
∗[Z],

or

Pj = Q(Xj) =
1

r̄
E
∗[Xj].

Proposition 3.21. (1) No arbitrage ⇐⇒ there exists a risk-neutral proba-

bility and π∗ � 0.

(2) No strong arbitrage ⇐⇒ there exists a risk-neutral probability with π∗ ≥ 0.

Proof. Exercise. �

Remark 3.22. The risk-neutral probability is unique ⇐⇒ The market is com-

plete.
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Theorem 3.23.

qu(Z) =
1

r̄
sup
π∗�0

E
∗[Z],

ql(Z) =
1

r̄
inf

π∗�0
E
∗[Z].

Proof. Exercise. �

Example 3.24. There are two securities in the market.

Security 1: P1 =
1

2
, X1 = (1, 1, 1)

Security 2: P2 = 1, X2 = (1, 2, 4).

Then the risk-free return r̄ = 2. Therefore,⎧⎪⎨
⎪⎩

π∗1 + π∗2 + π∗3 = 1,

π∗1 + 2π∗2 + 4π∗3 = 2.

Hence, if the model is arbitrage-free,

π∗1 = 2π∗3, π∗2 = 1− 3π∗3, for 0 < π∗3 <
1

3
,

i.e., the collection of all risk-neutral probabilities is given by

Π =

{
(π∗1, π

∗
2, π

∗
3) : π

∗
1 = 2π∗3, π∗2 = 1− 3π∗3, 0 < π∗3 <

1

3

}
.

Hence, for Z = (1, 3, 2),

E
∗[Z] = 1 · π∗1 + 3 · π∗2 + 2 · π∗3 = 3− 5π∗3.

This implies that

qu(Z) =
1

r̄
sup
π∗�0

E
∗[Z] =

1

2
sup
π∗∈Π

E
∗[Z] =

1

2
sup

0<π∗
3<1/3

(3− 5π∗3) =
3

2
,

ql(Z) =
1

r̄
inf

π∗�0
E
∗[Z] =

1

2
inf
π∗∈Π

E
∗[Z] =

1

2
inf

0<π∗
3<1/3

(3− 5π∗3) =
2

3
.
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3.4. Summary on “no arbitrage”

Theorem 3.25. The following statements are equivalent:

(1) There is no arbitrage in the market model.

(2) The payoff pricing functional q is linear and strictly positive on M.

(3) There exists a strictly positive valuation functional Q.

(4) There exists a vector q̄ ∈ R
S such that P = Xq̄T and q̄ � 0.

(5) There exists a risk-neutral probability (π∗i ) such that π∗ � 0, where

π∗i =
qi

S∑
j=1

qj

.

Similar results to no strong arbitrage.

3.5. Exercise

(1) Find the state price of the following valuation functionals.

(a) Two states and two securities with P1 = 1, X1 = (1, 1), P2 = 1, X2 = (2, 0.5).

(b) Three states and three securities with P1 = 1, X1 = (2, 2, 2), P2 = 1,

X2 = (1, 2, 3), P3 = 1, X3 = (4, 2, 1).

(2) Find a positive solution q̄ to P = Xq̄T if it exists.

(a) Two states and one security with P1 = 1, X1 = (2, 2).

(b) Three states and one security with P1 = 1, X1 = (1, 2, 3).

(c) Three states and two securities with P1 = 1, X1 = (2, 2, 2), P2 = 1, X2 =

(1, 2, 3).

(d) Three states and three securities with P1 = 1, X1 = (2, 2, 2), P2 = 1,

X2 = (1, 2, 3), P3 = 1, X3 = (4, 2, 1).
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(3) Find the value of qu(Z) and ql(Z) for the following models.

(a) One security and three states with P1 = 1, X1 = (1, 4, 2). A contingent

claim with payoff Z = (2, 1, 3).

(b) Two securities and three states with P1 = 1, X1 = (2, 2, 2), P2 = 2, X2 =

(3, 4, 5). A contingent claim with payoff Z = (4, 6, 2).

(c) Two securities and four states with P1 = 1, X1 = (1, 1, 1, 1), P2 = 2, X2 =

(1, 2, 3, 4). A contingent claim with payoff Z = (4, 3, 2, 1).

(d) Two securities and four states with P1 = 1, X1 = (1, 1, 1, 1), P2 = 2, X2 =

(1, 2, 3, 4). A contingent claim with payoff Z = (1, 1, 2, 2).

(4) Find the risk-neutral probability in the following cases.

(a) Two states and one security with P1 = 1, X1 = (2, 2), P2 = 1, X2 = (1, 4).

(b) Three states and two securities with P1 = 1, X1 = (2, 2, 2), P2 = 1, X2 =

(1, 2, 3).

(c) Three states and three securities with P1 = 1, X1 = (2, 2, 2), P2 = 1,

X2 = (1, 2, 3), P3 = 1, X3 = (4, 2, 1).

(5) Consider a financial market with three states and three securities with P1 = 1,

X1 = (1, 1, 1), P2 = 1, X2 = (0.8, 1, 2), P3 = 1, X3 = (0.5, 2, 1).

(a) Find the risk-neutral probability π∗.

(b) Find E
∗[Z1] for contingent claim Z1 = (3, 4, 5).

(c) Find E
∗[Z2] for contingent claim Z2 = (1, 4, 10).

(6) Consider a financial market with three states and two securities with P1 = 1,

X1 = (1, 1, 1), P2 = 1, X2 = (0.8, 1, 2).

(a) Find the collection of all possible risk-neutral probabilities.

(b) Find qu(1, 2, 3) and ql(1, 2, 3) using the above result.
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(7) (a) Prove that there is “no arbitrage” in a financial model if and only if there

exists a risk-neutral probability π∗ and π∗ � 0.

(b) Prove that there is “no strong arbitrage” in a financial model if and only if

there exists a risk-neutral probability π∗ and π∗ ≥ 0.


