CHAPTER 3

State Prices and Risk-Neutral Probabilities

3.1. State prices

Let Q : R® — R be a valuation functional and let (e,);<s<s be the standard ordered

basis for R®, i.e., ¢; = (0,...,0,1,0,...,0), where 1 is at the i-th position.

Definition 3.1. Define ¢, = Q(es) to be the state price of state s. If M = R

(complete market), then
¢ = Q(e;) = q(e;) = {h"P: h satisfies AT X = ¢;}.

Remark 3.2. (1) If @ is strictly positive, then each state price g; is strictly pos-
itive.

(2) If @ is positive, then each state price ¢; is positive.

Example 3.3. (1) As in Example 2.16 (1),
1 1
Qy1,y2) = S + 1Y

Thus, the state prices are given by

$=Q10=5  e=Q01)=

(2) As in Example 2.16 (2),

1 1 1
Q(Ivywz)_gx_‘_zl y+§Z
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Thus, the state prices are given by
1 1 1
q1 :Q(l,0,0) :§7 QZ:Q«);LO) 217 q3:Q(07071) - g

Remark 3.4. For Z € R®, we have

S
22224%
s=1

The representation

s s s
QZ)=0Q (Z Zi€i> = ZZz‘Q(ez) = ZZz‘Qi =q- 7,

with ¢ = (q1, ..., gs), is called the state-price representation of the valuation functional Q).

Remark 3.5. Due to Q(Z) = ¢ - Z, we see that
Pi=Q(X;)=q-X;=X;q".
This implies that

P=Xq. (3.1)

Theorem 3.6. There exists a strictly positive valuation functional <=  there
exists a strictly positive solution q to the equation (3.1). Each strictly positive solution q

defines a strictly positive valuation functional Q such that Q(Z) = q- Z, for all Z € R¥.

PROOF. “=> Shown above! (7 = (¢, ..-,qs))

“<=" 1f q is a strictly positive solution to (3.1). Define

QZ)=q- 7

Then @ is linear and strictly positive.

It remains to show that

Q(Z) = the payoff pricing function ¢(Z) for all Z € M.
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For Z € M, there exists a portfolio h such that Z = h' X, then

QZ)=q-Z=2¢" =h"Xqg =h"P=q(2).

Corollary 3.7. No arbitrage <=  there ewists a vector § € R® such that
P=Xqg" and q>0.
Proo¥r. Exercise.

Theorem 3.8. The following statements are equivalent:

(1) There ezists a positive valuation functional.
(2) No strong arbitrage.

(3) There exists a vector ¢ € R such that

P=Xq" and g>0

PROOF. Exercise.

Example 3.9. (1) There are two securities in the market.
security 1 (bond): P =1, X, = (1,1);
security 2 (stock): P, =1, Xy =(1,2).

Solve the equation
Py B X4 q1
P2 X2 q2
ie.,
1 11 ¢

1 1 2 q2
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Thus,
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This is no strong arbitrage, but there is an arbitrage opportunity.
(2) There are two securities with 3 states in the market.
security 1 (bond): P =1/2, X; = (1,1,1);
security 2 (stock): P, =1, X, =(1,2,4).

Positive state prices q1, ¢o, g3 are positive solutions to

q1
Py X1
= q2 |
b, X5
q3
i.e.,
q1
1/2 1 11
= q2
1 1 2 4
q3
Thus,
1
G+ @+ g = >
G +2q+4q3 =1,
whose solution is
1
Q1 = 2qs, ©=5- 3q3.

1

(i) For positive state prices: ¢i,¢2,q3 >0 — 0<¢g3< 5

Thus, there exists a positive solution to Equation (3.1), i.e., this model is

strong arbitrage free.
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(ii) For state prices: strictly positive = ¢q1,¢2,¢3 >0 = 0<g3< é
Thus, there exists a strictly positive solution to Equation (3.1), i.e., this
model is no arbitrage.

(3) There are two securities in the market.
security 1 (bond): P =1, Xy =(1,1,1);
security 2 (stock): P, =1, X, =(1,2,4).

Positive state prices qi, g2, g3 are positive solutions to

q1
P X,
= q |
Py X
q3
ie.,
q1
1 1 1 1
= q2
1 1 2 4
qs3
Thus,

G+ @+ g =1,
G+ 2q+4q3 =1,
whose solution is

¢ = 1+ 2qs, G2 = —3q3.

Thus,

(i) Since this system of equations has no strictly positive solution (there is no
q2 and g3 such that go, g3 > 0), this means that this model has an arbitrage
opportunity.

(ii) There is one positive solution ¢ = (q1,¢2,q3) = (1,0,0), hence there is no

strong arbitrage in this model.
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3.2. State prices and value bounds

Proposition 3.10. No arbitrage —

w(Z) = max{q-Z:P=Xq},
q=0
@(Z) = min{g-Z:P=Xq"}.
G=0
PROOF. Step 1: Let
Gu(Z) =max{q-Z : P = Xq"}.
q=0
For h € R’ satisfying A7 X > Z, we have

' Xq" > Zq" for ¢ satisfying P = X¢' and g > 0.

Thus,
M'P>q-Z
for all trading strategy h satisfying h” X > Z. Taking minimum on the left-hand
side over all h satisfying hT X > Z, we get that ¢,(Z) > q- Z for all 7 satisfying
P = Xq" and ¢ > 0. Hence, q,(Z) > ¢.(2).
Step 2: Due to the proof of Theorem 2.14, there exists a valuation functional ) such that
Q(Z) = qu(Z). Thus, q,(7) is the least upper bound for the valuation functional.

Hence, ¢.(Z) < G.(Z) due to the definition of §,(2).

By Step 1 and Step 2, we have ¢,(Z) = ¢,(Z). Similar argument for ¢,(72). O

Example 3.11. (1) There is one security with 2 states in the market. Security

P =1, X; = (1,2). Consider the contingent claim Z = (1, 1).
q(1,1) = max{g-(1,1): P =Xq'}
q=

= max {¢1+ ¢ q +2¢ =1}
q1,92>0
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It is easy to get that q,(1,1) =1 (See Figure 3.1).

FiGURE 3.1

Similarly, we have

. 1
q(l,1)= min {1 + @2 : 1 +2¢q2 = 1} = =.
q1,4220 2
(2) There is one security with 3 states in the market with
P=1 X1 =(1,22).
For contingent claim Z = (1,1,1), find ¢,(Z) and ¢,(Z).
@(1,1,1) = max{g-(1,1,1): P=Xq'}
7>
= max {q+q+ag:q+20+2¢=1}
41,942,930
Thus, we have
¢ =1—-2¢—2q3 >0, 72 > 0, q3 = 0.

This implies that we aim to solve

max (1l — ¢z — ¢3)
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subject to the constraints

1
Q2+Q3§§a g2 > 0, gz > 0.

This implies that ¢,(Z) = 1. Similarly, we have

' 1
@(Z) = min O{Ch + @+ g3+ 2 +2¢3 =1} = 9

q1,92,93>
(3) There are two securities with 3 states in the market.
1
Security 1: P = 3 X;=(1,1,1),
Security 2: P,=1, Xy =(1,2,4).

For Z = (0,0, 1), find ¢,(Z) and ¢, (7).

@w(Z) = max{q-Z:P = chT}

=0

q1,92,93>0 2

1
= max {Q3SQ1+QQ+Q3:—7Q1+QQ2+4CI3:1}-

Solving the system of equations

1
G+ @+ g =

G +2q+4q3 =1,

we get

1
g1 =2q3 >0 and =35~ 3qs3.

Thus, 0 < g3 < —. Hence

| =

9

| =

@(Z) == and the corresponding ¢ = (

=
=
N~

N = Wl

a(Z)=0 and the corresponding ¢ = ( ;

N —
(e
N
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3.3. Risk-neutral probabilities

Assumption. There is no arbitrage in the market.

Definition 3.12. A contingent claim that does not depend on the state is risk-free.

We denote the risk-free return by 7(€ R).

Example 3.13. A model with two securities:
Security 1: P =1, X;=(2,2,2),
Security 2: P =1, Xo = (1,2,4).

Then its risk-free return 7 = 2.

Remark 3.14. No arbitrage == the risk-free return 7 is unique.

Lemma 3.15. If there is no arbitrage and a nonzero risk-free payoff in the asset span

M, then

PROOF. Since the risk-free return = 7, if the price if risk-free asset at time 0 is P, the

payoff at time 1 is equal to (Pr, ..., PT). Hence the valuation functional

S S
P = Q(Pr,..,Pr)=Q <Z Pm) = ZPFQ(es)

= > Pre,=Pr)
s=1 s=1
Thus,
_ 1
r = g .
p
s=1
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Remark 3.16. (1) Note that Lemma 3.15 holds if (1,1,...,1) in the asset span

M, otherwise, the risk-free return may not be unique.

(2) Suppose Q(Z) = G- Z, then

S
QL. 1) =) q

==

Example 3.17. (1) A model with two securities

Security 1: P=1, X, =(1,2,3),

Security 2: P, =2, Xy = (5,4,3).

Then (1,1,1) € M. Consider the equation

q1
1 1 2 3
- Q2 |-
2 5 4 3
q3
i.e., we aim to solve the system of equations
G +2q2 +3q3 =1,
5q1 +4g2 +3q3 =2,
Summing these two equations, we get
1
q1+q+qs= 5
This implies that 7 = S = 2.
>
s=1
(2) A model with two securities
Security 1: P =1, X; =(1,2,3),

Security 2: P, =2,

X2 = (8, 4, 2)
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Then (1,1,1) ¢ M. Consider the equation

q1
1 1 2 3
- q2 5 (32)
2 8 4 2
qs3

i.e., we aim to solve the system of equations

G+ 22+ 3q3 =1,

8q1 +4qo +2q3 = 2.

Thus, the collection of all strictly positive solutions to (3.2) is given by

( ) _2 _1 11 0< <3
41,492,493 -Q1—3CI37 Q2—2 6613: q3 1
Hence,
1 1
Q1+C]2+CI3=§—EQ37

which is not unique. In fact, since

5< + + <1
11 d1 T 42 T g3 B%

11
we get that the range of the possible risk-free returnis 2 < r < = in an arbitrage-

free model.

Definition 3.18. Let ¢ be strictly positive state price vector. Define

T = ‘ forall 1 <i<8S.

We call 7* = (7, 735, ..., m§) the risk-neutral probability (7} > 0, Z i =1).

2
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Notation 3.19. Let E* denote the expectation with respect to the probability 7*,

then

for contingent claim Z = (74, ..., Zs).

Remark 3.20. Since

This implies that

Thus, the value of each contingent claim = the discounted expectation of the claim with

respect to the risk-neutral probabilities. i.e.,

or

Proposition 3.21. (1) No arbitrage <= there exists a risk-neutral proba-
bility and 7 > 0.

(2) No strong arbitrage <= there ezists a risk-neutral probability with 7 > 0.

PRrROOF. Exercise. O

Remark 3.22. The risk-neutral probability is unique <=  The market is com-

plete.
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Theorem 3.23.

Qu(Z) = Z Sup E*[Z]a

T >0

w(Z) = Lint E*[Z].

T >0
Proor. Exercise.
Example 3.24. There are two securities in the market.

1

Security 1: P = 3 X;=(1,1,1)
L,

Security 2: P, = Xo=(1,2,4).

Then the risk-free return ¥ = 2. Therefore,

m+ 7w+ m =1,
T 4275 +4m; = 2.
Hence, if the model is arbitrage-free,
my =2m;, 7w, =1-—3n;, for()<7r§<§,
i.e., the collection of all risk-neutral probabilities is given by
* * * k * * k * 1
II= {(7?1,%2,%3) iy =2my, ma=1-—3m;, 0<m< g} :
Hence, for Z = (1,3,2),
EZ]=1-7n{+3 -7+ 27 =3 — bmj.
This implies that

w(Z) = 1 sup E*[Z] = L sup E*[Z] =

w(Z) = 1imf E*[Z]:l inf E*[Z] =

57
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3.4. Summary on “no arbitrage”

Theorem 3.25. The following statements are equivalent:

1

There is no arbitrage in the market model.

2) The payoff pricing functional q is linear and strictly positive on M.

(1)

(2)

(3) There ezists a strictly positive valuation functional Q.

(4) There exists a vector § € RY such that P = Xq* and q > 0.
(5)

5) There exists a risk-neutral probability (7)) such that 7 > 0, where

=
24
j=1

2

Similar results to no strong arbitrage.

3.5. Exercise

(1) Find the state price of the following valuation functionals.
(a) Two states and two securities with P, =1, X; = (1,1), P, =1, Xy = (2,0.5).
(b) Three states and three securities with P, = 1, X; = (2,2,2), P, = 1,
Xo=(1,2,3), Py=1, X3 = (4,2, 1).
(2) Find a positive solution g to P = Xq’ if it exists.
(a) Two states and one security with P, = 1, X; = (2,2).
(b) Three states and one security with P, = 1, X; = (1,2, 3).
(c¢) Three states and two securities with P, = 1, X; = (2,2,2), P, =1, Xy, =
(1,2,3).
(d) Three states and three securities with P, = 1, X; = (2,2,2), P, = 1,

X2 - (1,2,3), P3 - 1, X3 - (4,2,1)
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(3) Find the value of ¢,(Z) and ¢;(Z) for the following models.
(a) One security and three states with P, = 1, X; = (1,4,2). A contingent
claim with payoff Z = (2,1, 3).
(b) Two securities and three states with P, = 1, X; = (2,2,2), P, = 2, Xy =
(3,4,5). A contingent claim with payoff Z = (4,6, 2).
(c¢) Two securities and four states with P, = 1, X; = (1,1,1,1), P, = 2, X, =
(1,2,3,4). A contingent claim with payoff Z = (4,3,2,1).
(d) Two securities and four states with P, =1, X; = (1,1,1,1), P, =2, X5 =
(1,2,3,4). A contingent claim with payoftf Z = (1,1, 2,2).
(4) Find the risk-neutral probability in the following cases.
(a) Two states and one security with P, =1, X7 = (2,2), P, =1, Xy = (1,4).
(b) Three states and two securities with P, = 1, X; = (2,2,2), P, =1, Xy, =
(1,2,3).
(c) Three states and three securities with P, = 1, X; = (2,2,2), P, = 1,
Xo=(1,2,3), =1, X3 = (4,2,1).
(5) Consider a financial market with three states and three securities with P, = 1,
X, =(1,1,1), P,=1, X, = (0.8,1,2), Py = 1, X5 = (0.5,2, 1).
(a) Find the risk-neutral probability 7*.
(b) Find E*[Z;] for contingent claim Z; = (3,4, 5).
(c) Find E*[Z,] for contingent claim Z, = (1,4, 10).
(6) Consider a financial market with three states and two securities with P, = 1,
X, =(1,1,1), B,=1, X, = (0.8,1,2).
(a) Find the collection of all possible risk-neutral probabilities.

(b) Find ¢,(1,2,3) and ¢(1,2,3) using the above result.
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(7) (a) Prove that there is “no arbitrage” in a financial model if and only if there
exists a risk-neutral probability 7* and 7* > 0.
(b) Prove that there is “no strong arbitrage” in a financial model if and only if

there exists a risk-neutral probability 7* and 7* > 0.



