
CHAPTER 6

Risk-Aversion

Consider two utility functions.

v1

v2

Figure 6.1

It seems that the utility function v
2

is risker than the utility function v
1

. How is the

logic? How can we say a utility function is riskier than the other one? Any measure of

risk aversion must be local. We may look the two pictures in Figure 6.2. In the lower

consumption level, the right is riskier than the left and in the higher consumption level,

the left is riskier than the right.
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104 6. RISK-AVERSION

linear for lower lever C linear for higher level C

Figure 6.2

6.1. Arrow-Praft measures of risk aversion

Recall the von Neumann-Morgenstern utility function:

U(C
1

, C
2

, · · · , C
S

) � U(C 0
1

, C 0
2

, · · · , C 0
S

) ()
SX

s=1

⇡
s

u(C
s

) �
SX

s=1

⇡
s

u(C 0
s

)

Remark 6.1. Von Neumann-Morgenstern utility function is not unique. If we replace

u(·) by w(·) = au(·) + b with a > 0, then

X

s

⇡
s

u(C
s

) �
X

s

⇡
s

u(C 0
s

) ()
X

s

⇡
s

w(C
s

) �
X

s

⇡
s

x(C 0
s

).

Question. How to measure the risk aversion?

Consider two utility functions u(C) and 6⇥ 1023u(C),

Their second derivatives: u00(C) and 6⇥ 1023u00(C).

We find that when we normalize �u00(·) by the first derivative, i.e.,

�u00(C)

u0(C)
,
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then this representation is independent of a�ne transformation, i.e., after a�ne transfor-

mation

�u00(C)

u0(C)
= �w00(C)

w0(C)
.

In the following suppose u0(C) 6= 0,

Definition 6.2. (1) �u00(C)

u0(C)
is called the level of absolute risk aversion (ARA)

of u(·) at C (or the Arrow-Pratt coe�cient of absolute risk aversion of u at level

C).

(2) �Cu00(C)

u0(C)
is called the level of relative risk aversion (RRA) of u(·) at C.

Notation 6.3. Denote

ARA(C) = �u00(C)

u0(C)
, and RRA(C) = �Cu00(C)

u0(C)
.

Example 6.4. (1) u(x) = ln x, then

ARA(C) = �u00(C)

u0(C)
=

�1/C2

1/C
=

1

C
,

RRA(C) = C · ARA(C) = 1.

(2) u(x) =
p
x, then

ARA(C) = �u00(C)

u0(C)
=

1

2C
,

RRA(C) = C · ARA(C) =
1

2
.

(3) u(x) =
x

ln x
for x � e2. Then

u0(x) =
ln x� 1

(ln x)2
, and u00(x) =

2� ln x

x(ln x)3
.
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Thus,

ARA(C) = �u00(C)

u0(C)
=

lnC � 2

C lnC(lnC � 1)
,

RRA(C) = C · ARA(C) =
lnC � 2

lnC(lnC � 1)
.

Remark 6.5. If ARA(C) = �u00(C)

u0(C)
, then

Z
C2

C1

ARA(C) dC = �
Z

C2

C1

u00(C)

u0(C)
dC = � ln u0(C

2

) + ln u0(C
1

)

Hence,

ln

✓
u0(C

2

)

u0(C
1

)

◆
= �

Z
C2

C1

ARA(C) dC.

This implies

u0(C
2

) = u0(C
1

) exp

✓
�
Z

C2

C1

ARA(C) dC

◆
.

Example 6.6. (1) If RRA(C) = �, then � = �u00(C)

u0(C)
. This implies that

� ln u0(C) + ln u0(1) = �
Z

C

1

u00(x)

u0(x)
dx =

Z
C

1

�

C
dx = � lnC,

i.e.,

u0(C) = u0(1)C��.

Thus,

u(C) =

8
><

>:

A lnC +B, if � = 1,

Ax1�� +B, if � 6= 1.

(2) If ARA(C) = �, then � = �u00(C)

u0(C)
. This implies that

� ln u0(C) + ln u0(1) = �
Z

C

1

u00(x)

u0(x)
dx =

Z
C

1

� dx = �(C � 1),

i.e.,

u0(C) = u0(1) exp (�(1� C)) .
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Thus,

u(C) = A exp(��C) + B.

6.2. Risk compensation

Definition 6.7. We define the risk compensation as the amount of deterministic con-

sumption one would have to charge an agent in exchange for relieving him or her of a risk.

Explicitly, the risk compensation for the additional consumption plan Z at deterministic

initial consumption y is the value ⇡(C,Z) that satisfies

E[u(C + Z)] = u(C � ⇡(C,Z)) (6.1)

(C is a constant and E[Z] = 0).

Remark 6.8. ⇡(C,Z) is also called the risk premium.

Remark 6.9. (1) We may use another terminology to explain the risk premium.

Since u is a strictly increasing continuous function, using the intermediate value

theorem, there eixsts a unique number c(µ) such that

u(c(µ)) = U(µ) =

Z
u(x)µ(dx). (6.2)

It follows that

�
c(µ)

⇠ µ,

i.e., there is indi↵erence between µ and the sure amount of money c(µ).

(2) The number c(µ) of (6.2) is called the certainty equivalent of the lottery µ 2 M.
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(3) Clearly, the number C is exactly the expectation of the the lottery µ, m(µ).

Thus, the value

⇡(µ) = m(µ)� c(µ)

is exactly the risk premium of µ.

(4) If u is strictly concave, the risk aversion implies via Jensen’s inequality that

c(µ)  m(µ), and

c(µ) < m(µ) () µ 6= �
m(µ)

.

In particular, the risk premium ⇡(µ) is strictly positive as soon as the distribution

µ carries any risk.

(5) The certainty equivalent c(µ) can be viewed as an upper bound for any price of

µ which would be acceptable to an economic agent with utility function u.

(6) The risk premium may be viewed as the amount that the agent would be ready

to pay for replacing the asset by its expected value m(µ).

Example 6.10. (1) Suppose that µ = (1, 4, 9, 16, 25) with probability 1/5 at each

state. Then the corresponding

C = m(µ) = 11

Z = (�10,�7,�2, 5, 14).

For u(x) =
p
x, we have

U(µ) =
p
1 · 1

5
+
p
4 · 1

5
+
p
9 · 1

5
+
p
16 · 1

5
+
p
25 · 1

5

= 3 = u(c(µ)) =
p

c(µ).

Hence, c(µ) = 9. Thus, the risk premium is given by

⇡(C,Z) = ⇡(µ) = m(µ)� c(µ) = 11� 9 = 2.
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(2) Suppose that µ = (1, 2, 4, 8, 16) with probability

✓
1

2
,
1

4
,
1

8
.
1

16
,
1

16

◆
. Then

C = m(µ) = 1 · 1
2
+ 2 · 1

4
+ 4 · 1

8
+ 8 · 1

16
+ 16 · 1

16
= 3

Z = (�2,�1, 1, 5, 13).

For u(x) = log x, we have

U(µ) = log 1 · 1
2
+ log 2 · 1

4
+ log 4 · 1

8
+ log 8 · 1

16
+ log 16 · 1

16

= log 2 ·
✓
1

4
+

1

4
+

3

16
+

1

4

◆
=

15

16
log 2.

Hence. c(µ) = 215/16 and its risk premium

⇡(C,Z) = ⇡(µ) = m(µ)� c(µ) = 3� 215/16.

Theorem 6.11. For Z with E[Z] = 0, and h is small.

⇡(C, hZ) ⇠=
h2

2
ARA(C) · Var(Z).

Proof. Due to the Taylor expansion on the both sides of (6.1)

E[u(C + hZ)] = E


u(C) + u0(C) · hZ +

1

2
u00(C)(hZ)2 + · · ·

�

= E[u(C)] + hE[u0(C)Z] +
1

2
h2E[u00(C)Z2] + · · ·

u(C � ⇡(C, hZ)) = u(C)� ⇡(C, hZ)u0(C) + · · · ,

we have

u(C)� ⇡(C, hZ)u0(C) + · · · = E[u(C)]| {z }
=u(C)

+hE[u0(C)Z]| {z }
=0

+
1

2
h2E[u00(C)Z2] + · · · .

Thus,

�⇡(C, hZ)u0(C) ⇠=
1

2
h2u00(C)E[Z2].
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This implies

⇡(C, hZ) ⇠=
1

2
h2

✓
�u00(C)

u0(C)

◆
E[Z2] =

h2

2
ARA(C)Var(Z).

⇤

Remark 6.12. Using the terminology in Remark 6.9(3) we can rewrite the above

theorem as

⇡(µ) ⇠=
1

2
ARA(m(µ)) · Var(µ).

Definition 6.13. The relative risk compensation for the relative risk Z at determin-

istic initial consumption C is the value ⇡
R

(C,Z) that satisfies

E[u(C + CZ)] = u(C � C⇡
R

(C,Z)).

Proposition 6.14. For Z with E[Z] = 0, and h is small, we have

⇡
R

(C, hZ) ⇠=
h2

2
RRA(C) · Var(Z).

Proof. Exercise. ⇤

6.3. The Pratt theorem

The two measures of risk aversion - the Arrow-Pratt measure and risk compensation

- can be used to compare the risk aversion of two agents. An important theorem says

that the comparison using the Arrow-Pratt and risk compensation always give the same

result.

Let u
1

and u
2

be two von Neumann-Morgenstern utility functions on R, and let ⇡
i

and ARA
i

denote the risk compensation and the Arrow-Pratt measure of absolute risk

aversion, respectively, of u
i

for i = 1, 2.
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Theorem 6.15 (Pratt Theorem). Suppose the utility functions u
1

, u
2

2 C2 are strictly

increasing. Then the following conditions are equivalent:

(1) ARA
1

(C) � ARA
2

(C) for every C.

(2) ⇡
1

(C,Z) � ⇡
2

(C,Z) for every constant C and every random variable Z.

(3) u
1

is a concave transformation of u
2

; that is, u
1

= f � u
2

for f concave and

strictly increasing.

Proof. “(1) =) (3)”: Since u
2

is strictly increasing, its inverse function u�1

2

exists,

and we can define the function f by f(t) = u
1

(u�1

2

(t)). Remain to show that f is strictly

increasing and concave. The first derivative of f is give by

f 0(t) =
u0
1

(u�1

2

(t))

u0
2

(u�1

2

(t))
,

which is strictly positive, since u0
i

> 0 for i = 1, 2. The second derivative of f yields

f 00(t) =
u00
1

(y)u0
2

(y)� u00
2

(y)u0
1

(y)

(u0
2

(y))3
= (ARA

2

(y)� ARA
1

(y))
u0
1

(y)

(u0
2

(y))2
,

where y = u�1

2

(t). Thus f 00 < 0, and hence f is concave.

“(3) =) (2)”: By the definition of the risk compensation we have

E[u
1

(C + Z)] = u
1

(C � ⇡
1

(C,Z)).

Because u
1

= f � u
2

and f is concave, application of Jensen’s inequality yields

E[u
1

(C + Z)] = E[f(u
2

(C + Z))]  f (E[u
2

(C + Z)])

= f(u
2

(C � ⇡
2

(C,Z))).

Combining the above two inequalities, we have

u
1

(C � ⇡
1

(C,Z))  u
1

(C � ⇡
2

(C,Z)).
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Since u
1

is strictly increasing, thus ⇡
1

(C,Z) � ⇡
2

(C,Z).

“(2) =) (1)”: Suppose that ARA
1

(C⇤) < ARA
2

(C⇤) for some C⇤. Since ARA
1

and

ARA
2

are continuous, there is an interval around C⇤ such that ARA
1

(C) < ARA
2

(C) for

every C in this interval. By Theorem 6.11, if h is small enough, then

⇡
1

(C, hZ) < ⇡
2

(C, hZ),

which contradicts to the second assertion. ⇤

Remark 6.16. The following conditions are equivalent:

(1) ARA
1

(C) > ARA
2

(C) for every C.

(2) ⇡
1

(C,Z) > ⇡
2

(C,Z) for every C and every random variable Z.

(3) u
1

is a concave transformation of u
2

; that is, u
1

= f � u
2

for f strictly concave

and strictly increasing.

Corollary 6.17. If u is a strictly concave C2 utility function, then

(1) ⇡(C,Z) is increasing in C for every Z () ARA(C) is increasing in C.

(2) ⇡(C,Z) is constant in C for every Z () ARA(C) is constant in C.

(3) ⇡(C,Z) is decreasing in C for every Z () ARA(C) is decreasing in C.

Proof. (1) Define a utility function v by

v(C) = u(C +�C)

for some �C > 0, then the Arrow-Pratt measure of absolute risk aversion is of the form

ARA
v

(C) = ARA(C +�C),

and the risk premium of v is given by

⇡
v

(C,Z) = ⇡(C +�C,Z).
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Applying Theorem 6.15, we have

ARA(C +�C) = ARA
v

(C) > ARA(C) () ⇡(C +�C,Z) = ⇡
v

(C,Z) = ⇡(C,Z).

Since �C is arbitrary, (1) follows.

(2), (3): Exercise. ⇤

6.4. Examples of utility functions

(1) Quadratic utility:

u(C) = AC � BC2, if A� 2BC � 0.

It looks very nice, but we should almost immediately forget about it again.

A/2B C

Figure 6.3. quadratic utility function

Problem: Image is bounded.

ARA(C) =
2B

A� 2BC
: increasing in C.
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Advantage (?): expected utility depends only on E[C] and Var(C), since

E[u(C)] = AE[C]� BE[C2]

= AE[C]� B((E[C])2 +Var(C)).

(2) Negative exponential utility: (Constant absolute risk aversion (CARA) or hyper-

bolic absolute risk aversion (HARA))

u(C) = � exp(�⇢C).

It does not matter when the utility is negative. Sometimes it is non-realistic.

However, without CARA it is di�cult to consider and discuss some economic

properties.

ARA(C) = ��⇢2e�⇢C

⇢ e�⇢C

= ⇢ = constant.

These utility functions can be shifted to any interval (a,1).

(3) Power utility and logarithmic utility function: (Constant relative risk aversion

(CRRA))

u(C) =

8
><

>:

C�

�
, if � 6= 0, � < 1,

logC, if � = 1.

Then u0(C) = C��1.

ARA(C) = �(� � 1)C��2

C��1

= (1� �)C�1 =
1� �

C
,

RRA(C) = C · ARA(C) = 1� �.

Remark 6.18. Logarithmic and negative exponential utility can be viewed as limiting

cases of power utility when � approaches 1 or 0.
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6.5. Other measure of risk aversion

Definition 6.19. J is said to be strongly more risk averse thanM (J , M : individuals)

if

inf
z

u00
J

(z)

u00
M

(z)
� sup

z

u0
J

(z)

u0
M

(z)
.

Lemma 6.20. J is strongly more risk averse than M , then

ARA
J

(z) � ARA
M

(z) for all z.

Proof. If J is strongly more risk averse than M , then

inf
z

u00
J

(z)

u00
M

(z)
� sup

z

u0
J

(z)

u0
M

(z)
.

Thus,

u00
J

(z)

u00
M

(z)
� u0

J

(z)

u0
M

(z)
,

i.e.,

�u00
J

(z)

u0
J

(z)
 �u00

M

(z)

u0
M

(z)
.

This inequality is exactly the inequality ARA
J

(z) � ARA
M

(z). ⇤

But the converse is not true.

Example 6.21. Let

u
J

(z) = �e�az and u
M

(z) = �e�bZ

with a > b. Thus, ARA
J

(z) � ARA
M

(z). However,

u0
J

(z)

u0
M

(z)
=

ae�az

be�bz

=
a

b
e(b�a)z,

u00
J

(z)

u00
M

(z)
=

�a2e�az

�b2e�bz

=
a2

b2
e(b�a)z.
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If z
2

� z
1

is large,

u00
J

(z)

u00
M

(z)
<

u0
J

(z)

u0
M

(z)
,

i.e., J is not strongly more risk averse than M .

Proposition 6.22. J is strongly more risk averse than M () there exists a

decreasing concave function G and � > 0 such that

u
J

(z) = �u
M

(z) +G(z) for all z.

Proof. “(=”: If u
J

(z) = �u
M

(z) +G(z), then

u0
J

(z) = �u0
M

(z) +G0(z)

u00
J

(z) = �u00
M

(z) +G00(z)

for all z.

u00
J

(z
2

)

u00
M

(z
2

)
= �+

G00(z
2

)

u00
M

(z
2

)
�

G:concave

� �
G:decreasing

�+
G0(z

1

)

u0
M

(z
1

)

=
u0
J

(z
1

)

u0
M

(z
1

)

for all z
1

, z
2

. This implies

inf
z

u00
J

(z)

u00
M

(z)
� sup

z

u0
J

(z)

u0
M

(z)
.

“=)” Suppose that J is strongly more risk averse than M , then for all z, there exists a

� > 0 such that

u00
J

(z)

u00
M

(z)
� � � u0

J

(z)

u0
M

(z)
.

Define

G(z) = u
J

(z)� �u
M

(z).

Since

G0(z) = u0
J

(z)� �u0
M

(z)  0,
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G is decreasing. Moreover, by

G00(z) = u00
J

(z)� �u00
M

(z)  0,

G is concave. ⇤

6.6. Exercise

(1) Calculate the absolute risk aversion (ARA) and the relative risk aversion (RRA)

of the following utility functions:

(a) (narrow power utility function) u(C) =
B

B � 1
C1� 1

B for C > 0, B > 0;

(b) (extended power utility function) u(C) =
1

B � 1
(A+BC)1�

1
B for B > 0,

A 6= 0, C > max

✓
�A

B
, 0

◆
.

(2) Find the conditions on which the relative risk aversion (RRA) of the extended

power utility function is decreasing.

(3) Let � be a non-zero constant.

(a) Suppose the absolute risk aversion (ARA) of a utility function is given by �,

find the utility function;

(b) Suppose the relative risk aversion (RRA) of a utility function is given by �,

find the utility function;

(c) Suppose the ARA of a utility function is given by ARA(C) = exp(�C) and

u(0) = u0(0) = 1, find the utility function.

(4) Find the risk compensation (risk premium) in the following models.

(a) the von Neumann-Morgenstern utility function u(x) = �x2, initial wealth

C = 1, profit Z = (1,�1), probability p = (1/2, 1/2);
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(b) the von Neumann-Morgenstern utility function u(x) = � exp(�x), profit

(3 ln 2, 0), probability p = (1/3, 2/3);

(c) the von Neumann-Morgenstern utility function u(x) = � exp(�x), initial

wealth C = 0, profit Z is a standard normal distribution (i.e., Z ⇠ N(0, 1)).

(5) Compute the absolute risk aversion and relative risk aversion of the following

utility functions. Moreover, find the relation of the utility functions in the sense

of “strongly more risk aversion”.

u
1

(x) = x;

u
2

(x) = x1/3;

u
3

(x) = x1/3 � x;

u
4

(x) = 100x1/3 � x.


