1-4 Initial and Boundary conditions

In ODE, the problem can have many solutions

if we don’t impose additional conditions.

The usual conditions we impose are initial

and boundary conditions as we saw in ODE.




Ex : Diffusion equation

{ut =ku,, 0 20
u(x,ty) = () .

An initial condition specifies the physical state at a particular

time ¢, .
For the diffusion equation, ¢(x) is the initial concentration

of the dye.

* Sometimes we restrict ourselves to a bounded domain D,




We still consider the case of diffusion.
If the dye is enclosed in a container D so that none can

escape or enter.

= Nothing is going out or in from the boundary.

.. u(concentration of the dye) is constant along the normal
direction.

.'.a—u=0=|7u-non0D




% Three most important kinds of boundary conditions
(D) u is specified. (Dirichlet condition)

(N) the normal derivative is specified. (Neumann condition)

(R) 3—2 = qu is specified. (Robin condition)

Ex : For the vibrating stringu; = Cly,y

e |f a string is held fixed at both ends, as for a violin string,

we have the homogeneous Dirichlet conditions
0,t) =u(l,t) =0.




e |f one end of the string is free to move
transversally without any resistance, then
there is no tension T at that end, sou,, = 0.
This is a Neumann condition.

e conditions at infinity
If the domain D is unbounded, we usually
provides conditions at infinity.
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* jump conditions
If the domain D has two parts, D = D; U D,
with different physical properties, for example,
for heat conduction, where D; & D, consist of
two different materials.
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1-5 Well — posed problems

Many phenonmanon can be formulated by PDEs,
like diffusion equation, wave equation & heat
equations.

How do we know if the model really makes sense

And which conditions we have to impose ?

So we have the concept of wall — posed problems.




Q : What are well — posed problems ?

Well — posed problems consist of a PDE in a domain together
with a set of initial & boundary conditions (or other conditions)
that satisfies the following fundamental properties :

1) Existence : There exists at least one solution u(x, t)
satisfying all the conditions.

2) Uniqueness : There is at most one solution.

3) Stability : The unigue solution depends in a stable manner
on the data of the problem.




e underdetermined — nonuniqueness

e overdetermined — nonexistence

The stability property is required in models of
physical problems.

Because there is also an error in an experiment.
If tiny changes in the conditions result in big

changes in the solution, then it is not good for



In PDE, the well — posedness problems are much harder
to distinguish than ODEs.

Let us look at an example

Ex -

Consider the Cauchy problem for the Laplace equation

u, +u, =0

u,+u, =0 — elliptic equation

u(o,y)=0 u(o,y)=0




This problem has a unique solution
u,(x,y) = % sinh nx sin ny.
We observe that as n — .
u, (x,y) still oscillates exponentially.
However, the solution of the limiting equation is zero.

Small changes in the initial data.

— big change in the solution.

. Itis anill — posedness problem.




Ex - U, =U
t XX
Consider the diffusion equation, iu(X,O) = f(X)

t > 0, this initial problem is well — posed.

U, = U,
However, the problem {U(X,O) — f(x) ’ t <0

is ill — posed since the diffusion process can not go
“backward”.




=" For the diffusion and wave equations, the
initial value problem and initial — boundary
value problems are well — posed.
We will discuss them as we learn how to

solve them.




1-6 Types of second order equations

In this section we will show that the Laplace, wave and
heat equations are typical among all second order PDEs.
In other words, second order PDEs can be classified into

three categories.

= Model problem
AUyy + 2bUyy + CUyy + aquy + AUy + agu =0

— a linear equation of second order in two variables.




= Theorem

By a linear transformation of the independent

variables, the equation can be reduced to one of

three forms, as follows

i) Elliptic case : if b? < ac, it is reducible to
Uxy T Uyy + - = 0. (Laplace — like equation)

ii) Hyperbolic case : if b > ac, it is reducible to

Uxx — Uyy + -+ = 0. (wave — like equation)




pf :
)b?<ac ..a#0

v 220, 4 S, + B+ B2y 4 20 0
alu —u —u — U, +—U, +—ul =
xx a ™ a a* a ¥ a

b c
=a (6x2u + 2 p 0x0yu + aayzu + lower orde'r) =0

.". We can just consider ( ).

2 b C .2
Oy u+256x6yu+aay u

b c b\ _,




ac—b?

If we let (ax + gay) u=0su, dyu = dyu,

a2
then the equation becomes afzu + a,,zu =0.

What are { andn ?

ac—b?
a2

Let r =

Bort = dou(x,y) = 9 +b6 _6u6x
gu = 0zulx,y) = 0yu - y“_axaf

. Ox dy b




dx By

au—au(xy)—rayu—axuan+ay an
,6x _
Zo0,Z=r 5 y=m+f©)

, b
x=¢, y=rn+;g‘
Then the equation for & and 1 is ugs + uy, = 0.

The proof is similar for other cases.




Ex :
Uyxy — DUy, = 0 — hyperbolic

Uy, — 12Uy, + 9u,,,, + u, = 0 — parabolic

dUyy + 6Uyy, +9U,, = 0 — elliptic




EX © Uxxy —SUyy =0

2
sol © 0,"u— 50,051 = (0y —20y) u— 2wy, =0

.". We hope (ax —gay)u = Uug, gu_y = Uy, _®

Let=x($,m), y = y(§,n), then {u,, = UyxXy T UyYy

Compared to (1), we set

5 5
xf=1’y$=_5 x?7=0'y?7=§
5 5

= x=¢,y=—-8 457




= =35 +3m
5
U = Uy " Xg T Uy ysc—ux-1+uy (_E)
5
=ux—§uy
5 5

Ugg = Unx " Xg + Uy " Ve = 5 Uyx " Xg — Slyy " Vg




U,, =
n = Ux "Xy T Uy Y =2
: 577 2 Ly
25

u u X, +—U Vn — u
n x
n 2 y n 2 "I
yy 4 yy

. Uzzr — =U,, — 5u =0
u
33 nmn XX Xy




% Working problem

Yuyy + 6Uyy + 9Uyy, =0

Remark

For functions of several variables u(x,y, z, -+ ),

one can consult the book.
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